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ABSTRACT

This report covers the scope of Mod. 4 of Contract NAS8-28358, covering

a period of less than one year which is interior to the total time span of

the contract. Thus what follows is a "final report" only in the sense of

providing final documentation of those tasks which have been completed during

this period. Specifically, this report includes the following subjects:

"The Influence of Spacecraft Flexibility on System Controllability and

Observability;" "Commutativity of Coordinate Truncation and Transformation

Matrix Inversion for Flexible Spacecraft Dynamic Analysis;" and "Matched

Asymptotic Expansion Modal Analysis of Rotating Beams."
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OVERVIEW

Contract NAS8-28358 began on 15 February, 1972, and is currently

scheduled through 14 December, 1974. The present report covers only'"Mod.

4" of the contract, which was awarded in late Spring of 1973 and covers

the period from 15 February 1973 to 15 February 1974. In this report there

appears a final documentation of those tasks presently deemed completed;

other work still in progress will be documented at the conclusion of "Mod.

5" of this contract, in December of 1974.

The three topics treated here are as follows:

Chapter 1. "The Influence of Spacecraft Flexibility on System Con-

trollability and Observability;"

Chapter 2. "Commutativity of Coordinate Truncation and Transformation

Matrix Inversion for Flexible Spacecraft Dynamic Analysis;"

Chapter 3. "Matched Asymptotic Expansion Modal Analysis of Rotating

Beams."

These chapters have been written by the Principal Investigator in such

a way that each can be submitted (perhaps in abridged form) for conference

presentation and/or journal publication.

Other topics under study during the Mod. 4 period of the contract

include:

(1) Development of general-purpose simulation equations for arbitrary

spacecraft;

(2) Evaluation of the influence of sensor and actuator location on

flexible spacecraft performance; and

(3) Preliminary evaluation of the concept of the disturbance-insensitive

control system.
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During the contract period, support funds were extended to Dr. Yoshiaki

Ohkami and (to a minimal degree) Mr. Oluyemisi Olusola, a student who is no
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CHAPTER I

The Influence of Spacecraft Flexibility

on System Controllability and Observability

Y. Ohkami

and

P. Likinst

ABSTRACT. Literal criteria are developed for the controllability and observa-

bility of general models of flexible spacecraft. Results are interpreted in

special cases and in physical terms, permitting in some cases the identifica-

tion of uncontrollable and unobservable states simply by examination of scalars

composed of modal parameters and location matrices for sensors and actuators.

A procedure is established for isolation of uncontrollable states, whereby

sensor and actuator configurations assure that uncontrollable flexible mode

states are also unobservable; in many applications such states can then be re-

moved by coordinate truncation.

Based on research supported by NASA Marshall Space Flight Center under Contract
NAS8-28358.

#Professor, School of Engineering and Applied Science, University of California,
Los Angeles, California, USA.
NASA International Fellow on leave at the University of California, Los
Angeles, from the National Aerospace Laboratory, Tokyo, Japan.
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INTRODUCTION

Scientific spacecraft now in the planning stages (as typified by the NASA

Large Space Telescope) are vehicles of dynamically significant flexibility

which must be capable of maintaining inertial orientations to within thousandths

of an arcsecond over periods of hours. Sensors and actuators are typically

distributed over the spacecraft, and influenced in their performance by vehicle

flexibility. The attitude control problems posed by these spacecraft are of

unprecedented difficulty, and their solution will require unparalleled preflight

investigation and perhaps conceptual innovation, such as system optimization or

adaptive control. Although problems of spacecraft attitude control have in the

past been resolved primarily by a combination of digital computer simulation

and the traditional design procedures of linear control theory, in the future

the techniques of modern control theory must increasingly be employed. The

purpose of this paper is to examine the fundamental concepts of controllability-

and observability as they apply to flexible spacecraft, in order to establish a

foundation on which to build future applications of modern control theory. As

our results emerge, it will become apparent that they are useful not only in

projected control system synthesis but also in the modal coordinate truncation

process which is essential to system simulation.

Preceding page blank



EQUATIONS OF STATE

Although a variety of mathematical models have been adopted for flexible

spacecraft, the most common idealization consists of a rigid primary body with

attached elastic appendages, which are themselves modeled sometimes as continua

[1] but most often as discretized assemblages of particles or rigid nodal bodies

interconnected by massless elastic elements called finite elements. [2J In

some cases, the appendage mass is distributed throughout the finite elements. [3]

Whether the original appendage model is continuous or discretized, its displace-

ments relative to the primary body are finally characterized by distributed or

modal coordinates, whereas the inertial orientation of the primary body is char-

acterized by discrete coordinates, such as a set of three attitude angles. In

many applications additional discrete coordinates are employed to describe the

motion of system components, such as rotors and scientific instruments. A rep-

resentation of vehicle kinematics in terms of a combination of discrete and dis-

tributed coordinates is called a hybrid coordinate formulation.

In what follows, it is assumed at the outset that the vehicle model consists

of a rigid primary body with discretized elastic appendages having n rigid nodal

bodies. After coordinate transformation, the resulting dynamic equations have a

structure that permits their interpretation as representative also of appendage

models consisting of elastic continua or distributed-mass finite element sys-

tems. An example in Appendix A illustrates the applicability of our results to

continuous appendages.

It is further assumed in this paper that the vehicle experiences only small

deviations from a nominal state in which the central body is of inertially fixed

orientation and the appendages have no deformations. Moreover, the vehicle has

no inherently nonlinear elements, so that all analysis can be based on linearized

variational equations. Implications for nonlinear systems can sometimes be

drawn from the physical interpretations of the conclusions presented here.
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From Eq. (278) of 12], the vehicle rotational equations take the form

I + A q = T (1)

where T is the 3x1 matrix representing the external torque vector about the

vehicle mass center c, for an orthogonal vector basis in the primary body b,

I is the 3x3 inertia matrix of the total vehicle for c, e is the 3xl matrix

of 1-2-3 inertial attitude angles of b, q is a 6nxl matrix consisting of a se-

quential ordering of 6x1 matrices typified for nodal body j by [ul uj u 8 8 T

where for a = 1,2,3, uj is the translation of the nodal body mass center relative

to b in the direction defined by axis a fixed in b, and 08 is the small rota-

tion of nodal body j about axis a. The 6nx3 matrix A is established by the

geometry and mass distribution characteristics of the appendages, as in Eq. (278)

of [2].

The appendage deformation equations in Eq. (277) of [2] may be written

M'q + Kq + AG = X (2)

under the assumption that the resultant external force applied to the vehicle is

zero. Here K is the appendage stiffness matrix and M' is the inertia matrix

appropriate for the appendage attached to a translationally free but rotation-

ally constrained rigid body. Both M' and K are symmetric and positive definite,

and all quantities in Eqs. (1) and (2) are real. The 6nxl matrix X consists

of n 6x1 partitions for the n nodal bodies, as typified for the jth body by

[f f f £2 3], where for a = 1,2,3, fj and a are the scalar components in

direction a of the external force and torque applied to nodal body j. In the

present application, A contains only forces and/or torques associated with atti-

tude control actuators. Although in practice these actuators might themselves

be defined by their own dynamical equations, it serves our present objectives to
treat them as pure thrusters or torquers.
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The relationship between X and T can be expressed in general terms involv-

ing the torque To applied directly to b and the forces and torques in X as

T = KA + T (3)

for some 3x6n matrix K which sums the torques on the nodal bodies and cross-

multiplies the forces by the vector Rj locating nodal body j relative to c; thus

K 1 U3 2 U3 U (4)

where U3 is the 3x3 unit matrix and in terms of the scalar components R , R-, R

of R in the vector basis fixed in b,

-Ri R

[J L R 0 -R (5)

In Eq. (3) there are potentially 6n+3 independent controls embodied in T and X.
0

In the simplest case the 3 elements of T are each identified as independent

controllers (each perhaps associated with a single actuator, such as an idealized

control moment gyro then it is most convenient to replace A in Eq. (2) by

S= YT (6)

in which the 6nx3 matrix Y establishes the location and type of the attitude

control actuators. For example, if the actuator is conceived as a pure torquer

located on the kt h nodal body, then

T = 0 0 --- 0 U 1--- 0 0 (7)

where U3 is a 3x3 unit matrix appearing in the 2kth position of 9 . If insteadc

the actuation system consists of a system of synchronized attitude control jets

responding to only three independent commands, then Eq. (6) still provides an

appropriate actuation model, althoughYT becomes more complex than the simplec
case illustrated by Eq. (7). (See the first example, case (c), in Appendix A.)

6



Since the nature of the'three-axis control problem clearly demands at least

three independent controllers, Eq. (6) represents a minimal actuator model.

In the next section we address the question: Is the system controllable

with the minimal actuator model? An affirmative answer implies controllability

with the more general actuator model of Eq. (3), but the system could theoret-

ically be uncontrollable with the minimal model of Eq. (6) and yet controllable

with the model of Eq. (3).

The dynamical equations (1) and (2) must be augmented by an observation

equation. Again we are concerned only with the minimal sensor model, which

provides only three attitude readings. Thus we adopt the observation equation

y = +0T q (8)

where the 6nx3 matrix 9? locates the sensors. For example, if a sensor on the

kth nodal body provides the three inertial attitude angles of that body, then

o is identical to the T matrix illustrated in Eq (7), and the sensor output is0 c

y = + k (9)

Physical arguments suggest that observability is unchanged by the acquisi-

tion of attitude rate information at the same locations for which attitude infor-

mation is established by Eq. (8). Generalization of this minimal sensor model

to permit more than three independent attitude measurements may, however, ex-

tend observability to additional states.

In the hybrid coordinate formulation, Eqs. (2) provide the basis for the

transformation

q = (10)

in which # is a 6nx6n matrix whose columns are the eigenvectors of that portion

of Eq. (2) involving only q. The noted properties of M' and K assure that these

eigenvectors are independent, and that 0 is nonsingular and has orthogonality

properties such that T M'0 and T KO are diagonal. (See [2], pp. 43 and 53.)
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Eqs. (1), (2), (7), (8), and (10) become, after pre-multiplication of Eq.

(2) by T and of Eq. (1) by I-1

- - u (11)

+ = ( TM')-lT I u (12)

y = 0 + 9 n (13)

where

u A I*-1T
U I _-(TM' )-1T

J -I*- T *- I TTM'1

a2  (TM')-1 TK

Eqs. (11) - (13), although obtained here for an appendage model [2] in

which all mass is concentrated in nodal bodies, apply also to vehicles with con-

tinuous appendages [1] or with distributed-mass finite element appendage models

[3]. In any case the dimension of n represents the number of appendage modes,

which henceforth is called N (rather than the symbol 6n which is appropriate

only for the fully discretized model without coordinate truncation.)

In what follows the eigenvectors in # are normalized so that PTM'# = UN;

then the diagonal elements a2 of the NxN matrix 02 represent squares of non-

zero natural frequencies of vibrations which could occur independently of each

other if the primary body were translationally free but constrained against

rotation, as noted in [2], page 55.

In terms of the (2N + 6)xl state variable

Eqs. (11) - (13) may be written as

x = Ax + Bu (14)

y = Cx (15)
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where

-1

I I I I I I
U I I o 0I310 u0 o I-0 o 31 0

0 U' 0 '-J 0 0 0 0A 31 I 1A=
Sol0 UNI 0 O iO01 UN

0 uN 0 0 I-a

o Iu3 1 o '
o Io - JM 2  o

0 0 1U _(16)

0 i0o -M1 
2  0

-1

0 U 2 (17)
0 10 UNI 0 0 0

-----------------------------------

I I I TT

I-0 1 O UN T CT 2 m
3-211 c -

and

C = [u3  O loT 0] (18)

with the NxN matrix M1 defined by
M A (UN -J)'I (19)

0~ N

and the 3x3 matrix M2 defined by

M2= (U3 -J)- (20)

Note that for OTM' = UN the matrices 6J and M1 are symmetric, although J6 and M2
are not. The inversion in Eqs. (16) and (17) has been accomplished by means of

the partitioning formula in Eq. (191) of [2].
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As proven in Appendix B, one can interpret J and'& in terms of primitive

definitions and obtain the physical interpretation
-1

M2 = I I (21)

where I1 is the inertia matrix of the primary body referred to its own mass cen-

ter. This interpretation guarantees that M2 is nonsingular, which as shown in

Appendix B implies that M1 is nonsingular.

CONTROLLABILITY

The system characterized by Eq. (14) is said to be completely controllable

[6] if any initial state x(t ) can be brought to any finite state x(T) in a

finite time interval T-to by some control function u(t).

A basic controllability theorem [6] indicates that the system of Eq. (14)

is completely controllable if and only if the controllability matrix, Qc , as

defined by

Qc= B AB A2B .. A2N+5B (22)

has full rank, which means rank equal to the dimension of x, namely 2N+6. (Note

that Qc has dimensions (2N+6) x (2N+6)3). With the notation

B 2  M2+JM1OT cI*
2 C

B A6M2+M1 T I*
4 21 c

we have

o0 B2  0 J(-M1 2 )B (-M12 N+2V, 4-M ""J-Il) B4

B2 I O J(-M2)B4  0 ... 0
S--- ---------- ---------- (23)
SB 0 (-M2)B (-M2)B N+2

B-(-M 2 I " i 0
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The rank of Qc is twice the rank of the (N+3)x3(N+3) matrix Qc, as given by

S22 (-M J-M J(i M 2 N+2

Qc = - 1 2 ---- -I - - -1-2 -2(24)

I I (-Mlo 2 )B4  (-M1 c 2 ) 2B4  ... (-M1 o
2 N+2 B4

In evaluating the rank of Qc it is convenient to premultiply by a matrix V

which has IVI =1 and which results in a block triangular form for Q'V. By
c

proceeding in three stages one can determine that the desired matrix is

U I o -J3 U-3 1 U3 1V ----------- --- --- ---- -- --- (25)
ScM2 I UN UN - UN

Since the determinant of a product is the product of determinants, the require-

ment IVI = 1 is satisfied, and premultiplication by V won't change the rank of

Qc. Moreover, the product VQc becomes (with the definitions of B2 , B4 , and M)c c

U3 i O I U3iI B 2  J(-M1 o 2 )B 4  . J (-Mlr2 N+ 2B1S-VQc - -- --- ------- -------
UI M1 -M102)B4 . M1(-M12 N+2B

M I 01

- , I 0 1T 1 2 M-1 2 N+2

c 1

Sj J 4(26)

UI 0 M 0 C

CN B 1 i (-I M1 I-Ml 22B (27)(-M B

Eq. (21) guarantees that M2 is nonsingular, so that the first three columns of

VQc in Eq. (26) are independent, and by virtue of the null partition these three

---- --- ---- --- (26)

columns are independent of all others in nVQ. Moreover, the possibility of

11
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normalizing TM' so as to make a2 the diagonal matrix df squares of nonzero

natural frequencies of the appendage indicates that a2 is nonsingular. Thus

the controllability condition becomes

Rank(QN) = N (28)

In the interpretation of this result, it becomes convenient to rewrite

QCN from Eq. (27) in terms of

6 A 6+T Y 1 (29)c C

The identities [4]

M2 = (U 3-J6) = U3+J(U-6J)-6 = U3+JM 6 (30)

and

M = (UN- =(U UN+6(U3 -) -1J = UN+6M2J (31)

permit recognition of the further identities

-1
JM1 = J(UN+6M2J) = (U3+J6M2)J = (M2 +J6)M2J = M2J (32)

and

6M2  .6+6JM16 = 6+6M2J6 = M16 (33)

and

M1 = UN+6M2J = UN +M16 (34a)

and

M1 = UN+6M2J = UN+JMI  (34b)

and these permit B4 to be written as

4
B = M1~+MI 'cI = M 6 c (35)

and thus permit QCN to be written in terms of 6 . A further simplification isC

afforded by multiplying QCN by the block diagonal matrix with blocks

12



2 N+1UN, (-UN), (-UN)2, .. (-UN 1) which removes the explicit minus signs from Eq.

(27) without changing its rank. If this product is called QCN' then the neces-

sary and sufficient condition for complete controllability becomes

Rank(QCN) = N (36)

where

-CN = cM16c (M102)M16j .  Ml02 N+1MI6 (37)

Before attempting to interpret this criterion in useful physical terms, we

establish a parallel criterion for observability.

OBSERVABILITY

A state x (t) characterized by Eqs. (14) and (15) is said to be observable

[10] if knowledge of u(t) and y(t) over a finite time segment to<T t completely

determines x (t); if all states in a system are observable the system is said

to be completely observable.

A basic observability theorem [8] indicates that the system of Eqs. (14)

and (15) is completely observable if and only if the observability matrix Qo'

as defined by

Q = cT ATCT (AT) 2CT .... (AT) 2NC (38)

has full rank, which means rank equal to the dimension of x, namely 2N+6.

Substitution from Eqs. (16) and (18), with the notation

T +T * T *
6 A TM' 6+0 oI = Y 0 I (39)

(to be compared with Eq. (30), noting the eigenvector normalization T M' = UN),

so that, with the definition of J,
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JT +(? 4) T ( TM'6) 6(I*-1 T+ T = (TM'6+ o  ) I I* = 6 *-1o o

produces for the observability matrix (in which MT = M )
I---

-- 0----------------- ---------------- ------------------_ I I I
0 I Ua 0 I 0 I... I a
-- = -Y - -- ....0-- -o -. -.. .( -- -----------.. .-- -' (40)J- ) .. l- ..... ....
O 0 (-M * I - 2M N+2( *_1

1 o I 1 (40)

The rank of Q is twice the rank of Q', where
0 0

S U3 , , 0 0

Q ---- --------------- ---------------- -- (41)
0 T 0 (-o2M )(6I *-l ) (-2M ) 2 ( I*l) _ (02M ) ( I )

and since the first three columns of Qo are independent of each other and of
0

all other columns the rank of Q' is three plus the rank of the residual matrix

obtained by deleting these three columns and the three top empty rows from

Qo. Because II*-1 0, and I #21 0, this residual matrix has the same rank

as the matrix

QON [M (M 2 )Mo ... (M N+ 16 (42)

(Note that, as in the controllability case, minus signs have been removed,

without influencing rank.)

Thus the necessary and sufficient condition for complete observability

becomes

Rank(QN) = N (43)

The observability conditions in Eqs. (42) and (43) are now very similar

to the controllability conditions in Eqs. (36) and (37), differing only in the

exchange of 6 for 6 .

o c
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INTERPRETATION OF RESULTS

The reduction of the controllability matrix to QCN (Eq. (37)) and the obser-

vability matrix to QN (Eq. (42)) implies that controllability and observability

of the system of dimension 2N+6 in Eqs. (14) and (15) can be inferred from that

of the system of dimension N given by

v M1 u2v+ 1 6cu (44)

w 6 T Mlv (45)o1

With this interpretation comes the realization that simpler necessary and suf-

ficient conditions for controllability and observability are given respectively

by the requirements for full rank (N) of the matrices.

QCN [Mli c i(M1 2  l6 c I (Ml 2 )N-1M16c] (46)

and

QON 1 [MIo (M' 2 )Mlo r (M1a2N-1M6 01 (47)

These conditions and the relationships between them are most interpretable in

physical terms when special cases are considered.

When all of the sensors and actuators are attached to a single rigid body

in the model, we can call that body the primary body, so that the location

matrices _c and o are both zero, 6 = 6 = 6, and the controllability andc 0 c o

observability conditions become identical, and simplify greatly. In this case

QCN in Eq. (46) and QON in Eq. (47) can be written with Eq. (33) in the form

QCN ON = [6M 2 1 2)M2 (M 6M2  ... ( N-1a M 2] (48)

Since by Eq. (21) the common factor M2 is nonsingular, the rank of the matrix

in Eq. (48) is unchanged by removing M2 throughout; thus the controllability and

observability criterion becomes
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Rank[6 I (M1 Y2)6 I ... (MO2)N-16] = N (49)

Eq. (49) simplifies dramatically when subjected to the following corollary

of Kalman's canonical structure theorem [7]: "If a system characterized by the

pair (A,B) is completely controllable and F is any matrix of appropriate dimen-

sion, then the system characterized by (A+BF, B) is completely controllable."

(This corollary is not proven in reference [7], so a proof is included here as

Appendix C.)

Eq. (34b) permits Eq. (49) to be written as

Rank[6 2 +6JM1 26 ( 2+6J 1 2 )N-16] = N

or, with the noted corollary,

Rank[6 'o6 .... (a2 N - 1 6] = N (50)

A typical Nx3 partition in the preceding matrix is

I I

21i 1 2i11 2i61 12i 1
11 1 1 2 i 3

2i 2 21 2 212 2i 2
2  2 1  2 2 02 3

2i6 =" I * I i

2i N 2i 2iN 2i N
'N li N 2 N 3

The Nxl columns in Eq. (50) can be interchanged without changing the rank, so

that Eq. (50) becomes

61 2 1 . 2(N-1) 1 12 .... 2(N-1) 61 1 .2(N-1) 1
1 1 1 1 12 1 23 1 3
2 2 2 .... 2 2 2(N-1) 2 2 2(N-1) 2
1 21 2 1 2 2 2 3 2 3

Rank .: N (51)

N 2 N .... 2(N-1) N N .... 2(N-1) N N 2(N-1) N
1 1 N N 1  2 N 2 3 N 3

16



or

Rank[AlG I A2 I A3g] = Rank[A1  A2 A3] 8 = N (52)

where

6 0
i

A A

0 " N6

and

2 4 2(N-1)1 a a a1 1 1
2  4  2(N-1)

S= 1 02 2 a2

1 ON N N

Since the determinant of the Vandermonde matrix a is given by [8]

2 2

then C is nonsingular if for all i # j, a, # j. Under this supposition Eq.

(50) is equivalent to

Rank[A1l A2 1 A ] = N

or T T

- 6262 0
Rank[A A 'A A = Rank = N

TA 0 6NT
A3  0

thus for ai oj for all i # j the condition

6i 0 i =, .. , N (53)

is necessary and sufficient for both controllability and observability.

17



In the case of repeated roots, we may assume that the first p roots are

repeated and the remainder all distinct, and then re-examine Eq. (51). Now

the first p rows are independent if and only if 61, ... , 61 are independent.

(Note that this is impossible for p>3, or in general for p exceeding the dimen-

sion of 6, which establishes the number of control axes in the problem.) If

the top p rows are deleted from Eq. (51), then what remains has a rank at least

as large as that portion of it given by a new version of Eq. (52) with N re-

placed by N-p and A and 8 beginning with a and 6p+l rather than 0 and 6
1 p+l 1 I 1

Thus in the case of p repeated roots l, ... , p it is sufficient for control-

lability and observability that 61, ... , 6p be independent and 6i iT 6 0 for

i = p+l, ..., N. (The authors suspect that this is also a necessary condition,

but the proof has eluded them.)

Eq. (53) admits an appealing physical interpretation when written as

tr(6iT )  0 (54)

since 6T6 = E i1 6 i has for the normalization TM' = UN previously been in-

terpreted ([2], pp. 69-70) as the inertia matrix of the appendage referred to

the system mass center c plus the difference in the inertia matrices of the
.T

primary body referred to c and to its own mass center. The quantity 61 6 has

been called the "effective inertia matrix" of the ith mode, and has been recog-

nized ([2], pp. 69-70) as a measure of the coupling between ith mode vibration

and primary body rotation. If 6 6T = 0, the ith mode would for output 0 be de-

leted from the model by coordinate truncation; thus the truncated system is

completely controllable and observable.

This success in dealing with the special case in which sensors and actuators

are all attached to one rigid body (here called the primary body) has not been

18



matched for the general case of arbitrarily distributed sensors and actuators.

Since the observability condition (Eq. (38)) depends only upon C and A while

the controllability condition (Eq. (22)) depends only upon B and A, one could

cope with the special case in which all sensors are on one rigid body and all

actuators on another by applying Eq. (53) twice, with two different selections

for the primary body and two different interpretations of all of the symbols,

but this case is less interesting than the common primary body case solved here

or the general case in which sensors and actuators are both distributed over

the body (as in the case of the telescopic sensors on the NASA Large Space

Telescope). For this general case the controllability and observability con-

ditions are full rank requirements for the matrices in Eqs. (46) and (47) res-

pectively. These requirements can be placed in slightly simpler form by observ-

ing that IM11 0 (Appendix B) and factoring M1 to the left; necessary and suf-

ficient conditions for controllability and observability then become respectively

Rank I (0 )6c ,... (OMl) N-1 = N (55)

and

Rank [Si ( )2 M) * 2M )N-1 = N (56)

These criteria correspond to.the state and observation equations

v= 2 v+6cU (57)

w (58)

For purposes of preliminary analysis, it may be useful to consider a flex-

ible appendage model characterized by a single mode. Eqs. (55) and (56) then

require simply that the 1x3 matrices 6c and 60 be of rank one, or the scalar

equivalents
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6 6T  0 (59)
cc

and

6 6T #0 (60)
oo

Experience with specific examples (see Appendix A) and with the special

case represented by Eq. (53) suggests that when many appendage modes are in-

cluded the satisfaction of Eqs. (59) and (60) for each mode is necessary but

not sufficient for complete controllability and observability respectively,

with an additional frequency criterion stipulating further criteria in the

event that eigenvalues of 2M1 are repeated. This proposition has however

not been proven; the corollary which produced Eq. (50) from Eq. (49) and sim-

plified the special case governed by these equations is not helpful in the

general case.

CONCLUSIONS

Necessary and sufficient conditions for controllability and observability

have been established in the form of full rank requirements for Nx3N matrices

for systems characterized by state equations of dimension 2N+6. For the

special case in which all sensors and actuators are attached to the same "pri-

mary" rigid body, the controllability and observability conditions are identical

and reduce to the requirements that N scalars i6i 6 (i=l, ... , N) be nonzero and

either appendage frequencies 1r' "' ' N be distinct or effective inertia
.T .

matrices 6 61 be independent.

With these conclusions come a new reason for the study of controllability

and observability. This investigation was initially stimulated by the realiza-

tion that much of the progress in optimal control theory depends upon the assump-

tions of complete controllability and observability [9]; if we are to address

the problem of flexible spacecraft control with the techniques of modern control

20



theory we must first determine whether or not our system is completely control-

lable and observable. It has been apparent from the outset that this issue is

clouded by the realization that in the flexible spacecraft modeling process

there is an ambiguity stemming from the foreknowledge that not all possible

modes of vibration are dynamically significant or even computationally available,

and many must be truncated from the system description prior to simulation. The

selection of which modes to truncate and which to preserve is a major decision

in flexible spacecraft simulation. Now we can see that the preceding conditions

for controllability and observability not only provide answers required for the

application of the techniques of optimal control, they also provide a new ration-

ale for modal coordinate truncation, as required for any system simulation.

It has been recognized previously ([2], pp. 69-70) that the "effective

inertia matrix" of each mode affords a rationale for truncation, since this

matrix provides a quantitative measure of the dynamic coupling between vibra-

tion in that mode and primary body rotation. Now we see from Eq. (53) that

the trace of this matrix is a formal measure of controllability and observabil-

ity when all sensors and actuators are on the primary body. Moreover, we find

that in the more general case in which controllers and observers are distributed

over the body, we have a new truncation criterion in the controllability and

observability conditions available from Eqs. (55) and (56). As we entertain

various truncations, our objective is to obtain a system of minimal dimension

consistent with the preservation of the fidelity of the output matrix

z = Dx 
(61)

which describes the salient aspects of the spacecraft mission performance.

Since the control law for u in Eq. (11) depends upon the sensor observations

y in Eq. (13), it is necessary that all significantly observable states be re-

tained in the coordinate truncation process. Although in general it is possible
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for an uncontrollable state to influence z and hence be among the states which

must be retained in truncation, in the special case of states describing flexible

body modes experience suggests that only controllable states will influence z.

Under this assumption, it becomes desirable to truncate all those uncontrollable

states which are also unobservable. This leads to the adoption of the design

objective of configuring sensors so that any uncontrollable states which do not

influence z are also unobservable; this strategy of uncontrollable mode isolation

permits in many flexible spacecraft control applications the truncation of all

uncontrollable states, which are by design also unobservable. The result is

often a completely controllable and observable system model, which is more amena-

ble to formal optimal control, simulation, and conventional control system design.
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APPENDIX A. EXAMPLES OF CONTROLLABILITY AND OBSERVABILITY CALCULATIONS

Example 1. Consider single axis rotation of a spacecraft with symmetric append-

ages of continuous thin beams as shown in Fig. Al.

(a)

Figure Al. Model of Example 1.

The rotational motion of the model is characterized by Eqs. (11) and (12) with

the observation equation (13). However, the assumptions that the rotational

motion is limited to the single axis and that the mass distribution is contin-

uous (so that each mass element has infinitesimally small moment of inertia)

necessitate a slight modification of definitions of 6, J, , Sc and o"0. Fur-

thermore, mode shapes are assumed to be given by a function of 5, i.e., J ()

which is at least once differentiable with respect to 5 over the intervals

d< I <L+d, or more specifically,

O ,O<l l<d

(C) = J(C) ,d<<L+d (A-l)

j () , -(L+d) <<-d

Preceding page blank
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Under these assumptions, we may express 6j (scalar) in terms of mode shape and

inertial parameters as follows.

/ L+d L+d
6 = -))- (A-2)L (L+d) L d

For the purpose of illustration, we further assume that only two modes are

retained (N=2). The first modal coordinate, nl , is associated with an asymmetric

mode which satisfies

and the second is with a symmetric mode which satisfies

The modal deformation coordinates thus defined are illustrated in Fig. A.2.

(1) 0'=2=0; q1 O (2) 0= 71 = 0; - 2 # 0

Figure A2. Asymmetric and Symmetric Modes.

Corresponding to these modes, 61 s (j=1,2) are given by

1 2m 1
6 = L +()d (A-3a)

62 = 0 
(A-3b)

We examine the following three cases.
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a) If both sensor and actuator are located on the primary body, the rotational

equation is characterized by

S- - = U (A-4)

.1+. 1 21

n2+02n2 = 0 (A-6)

with observation equation

y = 6 (A-7)

Since Eq. (A-6) is independent of u, 6 and 11 and does not affect Eq.

(A-7), we can readily identify 12 as uncontrollable and unobservable.

Thus, we may limit our analysis to the truncated system of equations in which

Eq. (A-6) is deleted.

Direct approach: For comparison, we examine the controllability and

observability matrices directly. In terms of the state variable

x [06,6O,1 1 ] the state equation is x = Ax+Bu with

0 1 0 0 0

12

0 0 0
o(1* 2 1 2 12

A = and B = -(

0 0 0 1 0

*2
-I a 1

0 0 0
I-()1 2 * 1 ) 2

and with the observation equation y = Cx with

C = [1 0 0 0]

Now, the controllability matrix is

Qc= [B AB A2 B IA 3 B]
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and the observability matrix is

T T T2T T
Qo = [C AT (A )2T C (AT) 3 C 1.

Matrix algebra produces, with a A (I(61 2 ) (>0),

0 a 0 -(6 ) 2a
22

a 0 -(61 )2 0

"2c = *1 2
o0 61 0 - 2

1 12
6ca 0 -I1 6 1 0

and

a 0 0 0

O a 0 0

aQ0 0 61 2 0

0 0 0 -61 2

Consequently,

IQcl = (-61) 36/a21 1

IQol = (61) 2ala2

Since a1 # 0, a>0 , the full rank conditions reduce to

61 # 0

for controllability and observability.

The result (Eq. (53)) on the controllability and the observability

produces the same conclusion as follows.

The fact that 62 = 0 implies that the state including n2 is not com-

pletely controllable, and is not completely observable either because the

sensor is attached to the same body as the actuator.

If l2 is deleted from the state, then Eq. (53) simply requires

61 # 0, noting that N = 1,
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b) If the actuator is attached to the primary body and the sensor is attached

at ( = (s as shown in Fig. Al, then it reads

y = 2+[~' s ' (A-8)

2

where for simplicity of notation we write

-(_) A j= 1, 2E s

In this case, Eqs.(A-4)-(A-6) remain unchanged so that the control-

lability condition is the same as the previous result.

The observability is to be discussed with respect to the state in-

cluding 12 in view of the difference between Eqs. (A-7) and (A-8). By

definitions of Eqs. (19) and (39),

Ml = 1U2 =*) [

1 *-

a o

I 1 I 2
M- OSo a c O

lo =  , MIo2

1"2 2
6 0 02o 2

29



Thus, we can construct Q0N defined by Eq. (47)

I * 2 2 1
* 0 2 1

O 2

Since Q0N is a square matrix, the full rank property is simply examined

by its determinant, i.e.,

*2 *
I = 1~-! 2 2 I 2

a o o 2 a 1

Thus, observability requires three conditions:

(i) 61 1 = 1 '# 0
o s

2 *2'
(ii) 6 2 I # 0o s

2 12
(iii) 2 - - 0

We see that the conditions (i) and (ii) are exactly what Eq. (60) requires.

2'
Especially, the second requirement which reduces to 2 # O is physically

2'
clear because if s = 0 then Eq. (A-8) is not affected by n2 as in the

previous case.

The condition (iii) deserves particular attention. This prohibits the

diagonal elements of Ml 2 to be equal or the eigenvalues of M1o2 to be

repeated. Eq. (44) should be referred to with consideration that in case

of diagonal M1o2, repeated eigenvalues are not accepted for the single input

system to be either completely controllable or observable. (For similar

discussion, see Ref. [9]).
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c) Assume that the sensor is attached to the primary body and a pair of gas

jets are attached on the beams at = R and 5 = - 2. Further, assume that

two actuators synchronize but their forces are not necessarily of equal

magnitude, i.e., the one at k = - 2 produces a force f2 which is given by

f2 = c'fl with -l<c'<l where fl is a force produced by the jet at 5 = 9.

Such dependency comes from the minimal actuator model. Then Eqs. (A-4) -

(A-6) are rewritten as

S- -- * = (l-c')f = u
I I

+ -6 -- fl =  u

l+c'
where c A

1-c'

By the definition of Eq. (29),

I 1 I 2 2 1

1 c 3
QCN

* 2 * 2

and

* 2 6 1 2(6 I2 2
CNI a cc 2 a -
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Thus,complete controllability requires three conditions:

1 1 1 *l 0
c +

(ii) 6 2 = ()I c/ 0 0
c +

2 I* 2
(iii) 2 - -- S # 02 a1

The condition (iii) is identical to that of (b). (i) and (ii) are what

Eq. (59) requires. The condition (i) together with (A3-a) implies that

if the mode (() satisfies the integral equation

jL+d

L- (d (+ (£) = 0

then i1 is uncontrollable. (Equivalently, if the actuator location

parameter, k, satisfies this, then n1 is uncontrollable.)

The condition (ii) requires

2 M() O and c # 0

c = 0 implies c' = -1 and f2 
= -f1 , which is realized by a pair of equal

magnitude jets. From the practical point of view, it is rather desirable

to locate the jets at k satisfying 2(k) = 0, because it can eliminate

the effect of n2 which causes an unnecessary vibration due to some im-

perfection of the jets (c # -1 or f2 # -f1 ). If this is possible, then

we can truncate q2 for this particular location, although otherwise we

must retain it.
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APPENDIX B. INTERPRETATION OF U3-J6

By the definitions following Eq. (13),

U3-J6 = U3-1 T (TM') 6 = I [I*-&T TM')6] (B-l)

Moreover, in view of the symmetry of M' and the definition of 6,

TOTM,6 =AT TM' )-1 TM, TM, -1 A

S-1 ATMA (B-2)

AT -1M-1 T T A TM'-

From [2], Eq. (277), with minor notational revision,

T
M' A M(U6n- UOZUM/ ) (B-3)

and

A A M(EOU - UO (B-4)

where M is the block diagonal 6nx6n matrix containing in alternating sequence

along the main diagonal the mass and inertia matrices of the nodal bodies, as
1 1 2 2 *- n n

designated by the 3x3 matrices m I, m , I, --- , m I. The symbol

denotes the total vehicle mass, and the 6nx3 matrix binary operators EUO and

EOU are defined in terms of 3x3 zeros and unit matrices by

EUO [U3  01 U3 I ... U3  0 ]T S (B-5)

and

EOU [01 U3 10 U31... 01 U3] (B-6)

Finally, the 1 in Eq. (B-4) is defined in terms of 3x3 zeros and the matrices

in Eq. (5) by
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-4R o o

o o o

0 0 R

A (B-7)

~n
R O

0 0

Thus Eq. (B-2) becomes, in view of the symmetry of M,

~1 T T -1
ATM -A = (zOU-RUO) M(U6n- UO uM/') (z OU-E U0

with the identity [4]

T -1 T -1 T
(U6n _UOUoTM/.jL) = U+ 6n UO[U6n Uo (M/) UO] M/

and the recognition that

n n

UMEUO = z m = EmiU3uou i=1 i=l

where mi is the mass of nodal body i, we can identify the scalar

n -
(1 - 7 mi/y ) -I =eAf/m

i=l

where mO is the mass of the primary body, and write (noting the skew-symmetry

of R)

ATM'-IA = ( OU+ ET+E UETOM/m0 ) (Eou-uo) (B-8)AM A OU UO 6n UO UOM /0 OU U (B-8)

With the identities

T
OUMEUo = O0

T
EUoMEou = 0
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UO OU

E ME E 0OU OU = I
j=1

T T n
UO U UO Uj

j=1

Eq. (B-8) becomes

n n n

AM'- E I -E m PO - [ mR j2/m (B-9)
j=1 j=1 j=1

The first two summations can be identified by the inertia matrix reference point

transfer theorem [5] as theinertia matrix of the set of n appendage nodal bodies

referred to the system mass center c. Thus, if I' is the inertia matrix of the

primary body referred to c, then, with Eqs. (B-9) and B-2), Eq. (B-1) becomes

-1 n .

3 -J= [I' + ( m Y.)2/m (B-10)j=1l

The sum Em.R is by system mass center definition equal to m times the vectorJ o

from c to the mass center of the primary body; thus by the noted reference

point transfer theorem the expression in square brackets in Eq. (10) is the

0
inertia matrix I for the primary body referred to its own mass center. This

matrix is symmetric and positive definite, which guarantees that the matrix
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-i

* o (B-11)U3-J6 = I

is nonsingular, and the matrix

-i
M2 = (U -J0)- o- 1 (B-12)

exists, so that

U3-J6 I O (B-13)

From the relationship [4]

P = det ---- -12 1P P
21 P22

-1 -1
Ie1 1I Ie22-P21 11P 12 1 = IP22 1 I 11 - 12 22P 21 1 (B-14)

with P = U , P22 = UN, P12 = J and P21 = 6, we see that

'UN-J61 = IU3 -6JI (B-15)

so that the nonsingularity of M1 is assured by the nonsingularity of M2.
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APPENDIX C. PROOF OF CONTROLLABILITY COROLLARY

Corollary: If a system characterized by the pair (A,B) is completely state

controllable and F is any matrix of appropriate dimension, then the system

characterized by (A+BF,B) is completely state controllable.

Note: This corollary is applicable whenever there exists a constant linear

feedback law, such that the control variable u(t) can be written in the form

u(t) = u c(t)+Fx(t)

where F is a constant matrix. Then the corollary states that the system con-

trollability is unaffected by the linear feedback term Fx(t).

Proof

Define a tridiagonal matrix V by

U -FB -FAB -FA2B ... -FAn-2B

O U -FB -FAB ... -FAn- B

0 0 U -FB

O 0 0 U ...
VA 2

0 0 0 0 . -FA2B

0 0 0 0 -FAB

O 0 0 0 -FB

0 0 0 0 ... U

Let

Q A [B I (A+BF)B (A+B)2B --- (A+BF)n-1B]
c= I I I I

so that

VQc = [B AB  A2B --- An- B]

Since IVI = 1, the rank of Qc is the rank of VQc , and the corollary is proven.
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CHAPTER II

Commutativity of Coordinate Truncation and Transformation

Matrix Inversion for Flexible Spacecraft Dynamic Analysist

P. Likins

and

Y. Ohkami

ABSTRACT. Necessary and sufficient conditions are established for the com-

mutativity of matrix inversion involved in certain coordinate transformations

and the coordinate truncations that are essential to practical structural

dynamics. Computational constraints demand that truncations precede the

generation of explicit transformed equations, while mathematical arguments

imply the opposite sequence. Results jeopardize the utility of two of the

three transformation procedures considered here for rotating flexible bodies.

tInvestigation supported by NASA Contract NAS8-28358

Professor

Postgraduate Research Engineer; on leave from National Aerospace
Laboratory, Tokyo, Japan
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INTRODUCTION

It is now commonplace to characterize spacecraft with flexible appenda-

ges in terms of hybrid coordinates, consisting of discrete coordinates for

rigid bodies in the system and distributed or modal coordinates for the

flexible appendages. The selection of mode shapes and frequencies associ-

ated with the modal coordinates is usually accomplished by adopting a finite

element model of the appendage and writing equations of motion for the small

vibrations of the appendage with respect to a base which has a nominally

constant (perhaps zero) inertial angular velocity; the eigenvectors of

these equations then provide the mode shapes and the eigenvalues provide

the natural frequencies of appendage vibration. This information is used

in various ways to construct a transformation matrix which transforms the

discrete nodal coordinates of the finite element model into distributed

coordinates; these then are reduced in number by a process of coordinate

truncation, which sacrifices mathematical rigor for computational feasibility

(hopefully without doing violence to the salient features of the mathematical

model). This paper addresses an aspect of the truncation problem which

arises in the case of modal analysis of an elastic appendage on a rotating

base. Several alternative transformations have been proposed for this case,

but comparison among them is difficult without detailed numerical studies.

In this paper we consider three alternative transformations, two of which

involve the inversion of the transformation matrix. Whereas mathematical

arguments demand that this matrix be inverted prior to truncation, practical

considerations demand that truncation precede inversion (which then requires

a pseudo-inverse). In this paper we establish necessary and sufficient

conditions for the commutativity of truncation and inversion, in order to

Preceding page blank

41



define the formal limits of these two procedures. We conclude with recom-

mendations for the selection of coordinate transformations for elastic

appendages on rotating bodies.
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EQUATIONS OF APPENDAGE VIBRATION

As shown in Eq. (64) of [1], the equations of vibration of a finite

element model of a flexible appendage on a rotating base have the structure

M + D q + G q + K q + A q =L (1)

where for an appendage with n nodes q is the 6nxl matrix of small deforma-

tions relative to a nominal (deformed) state, the matrices M , D , and K

t I

are symmetric, and the matrices G and A are skew-symmetric, with M positive

definite and hence nonsingular. These equations are applicable whether the

appendage mass is concentrated into rigid nodal bodies (as in [2], Eq. (140)),

or also distributed over the finite elements of the model (as in [1]). The

matrix L in Eq. (1) holds the vibration forcing functions, which include

base motions, but the coefficient matrices in Eq. (1) also depend on the

inertial angular velocity of the base. If and only if this velocity

experiences only small deviations from a nominal constant can these coef-

ficient matrices be treated (after linearization) as constants.

COORDINATE TRANSFORMATIONS AND TRUNCATION

FOR NONROTATING ELASTIC APPENDAGES

It is well known [3] that when the base is nonrotating and the appendage

is undamped the homogeneous counterpart to Eq. (1) becomes

I I

M + K q = 0 (2)

and that the transformation to modal coordinates

q = (3)

T
followed by premultiplication by T produces an uncoupled system of scalar

equations

i i + a. i  = 0 i = 1,...,6n (4)

where the columns of C are the eigenvectors of Eq. (2) and a.2 represents the
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th
i eigenvalue. The inhomogeneous counterpart to Eq. (4) may be written as the

scalar equation

ii + 2i (TL ). i = 1,...,6n (5)

where ( TL )i is the i
th element of the 6nxl matrix in parentheses. The

vibration equations in Eq. (5) could theoretically be used in conjunction with

the vehicle rotation equations to fully characterize the spacecraft attitude

dynamics, but in practice this is not done because most of the modal coordi-

nates i (i = 1,...,6n) have no significant influence on the motion of the

primary rigid body to which the flexible appendage is attached. Thus the

modal vibration equations are ignored except for a small number N < 6n

(typically N ranges from one to twenty and 6n is measured in hundreds or

thousands) and Eqs. (3) and (5) are replaced by

q = Tl (6)

and

+ = (TTL ) i = 1,...,N (7a)

or

S--2-- =T '
n + an =  L (7b)

-2where n is the Nxl matrix of truncated modal coordinates, a is the NXN

diagonal matrix of corresponding squared natural frequencies, and T is a

Nx6n matrix whose columns are the eigenvectors corresponding to those modal

coordinates which are retained. In practice one computes only the N eigen-

vectors in T and the corresponding eigenvalues, which normally include the

lower eigenvalues; calculation of all 6n eigenvalues and eigenvectors would

be not only prohibitively expensive but also computationally infeasible for

typical values of n.

Thus in the special case of Eq. (1) represented by Eq. (2) the trans-

formation matrix C (in Eq. (3)) need not be inverted; since the required
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transposition of 4 is commutative with truncation, there is no mathematical

obstacle to the pragmatically motivated practice of truncating 4 (as in Eq.

(6)) before transposing it (as in Eq. (7)).

GENERAL PROBLEM OF TRANSFORMATION

AND TRUNCATION OF COORDINATES

Although other special cases of Eq. (1) permit the use of special trans-

formation matrices which circumvent all matrix inversion (see [1], pp. 726-729

and [2], pp. 46-56), we are here concerned with the more general case, for

which there exists no transformation of the structure of Eq. (3) which

transforms the homogeneous counterpart to Eq. (1) into uncoupled scalar

second order equations such as those in Eq. (4). In the general case one

must rewrite Eq. (1) as a first order matrix (state) equation before attempt-

ing a transformation to uncoupled scalar equations.

In terms of the state variables in the 12nxl matrix

(8)

Eq. (1) can be written as

SQW + @Q =? (9)

or alternatively as

Q = BQ + L (10)

where

K +A I 0 0 -K -A

0 IM K +A ID +G

0 U

-(M )-1(K ++A) -(M')-I(G'+D')
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L (M )-L L

The eigenvalues l,.''' X12n and the eigenvectors 1 ... 12n associated

with the differential operators on Q in Eqs. (9) and (10) are the same, and

since all quantities in these equations are real we are assured that any

complex eigenvalues or eigenvectors appear in conjugate pairs. In what follows

we assume that the eigenvectors are linearly independent, so that the matrix

0 whose columns are these eigenvectors is nonsingular. The validity of this

assumption is assured if the eigenvalues are distinct [4], and assured even
I I

in the presence of repeated eigenvalues if A =D =0 and the null solution of

the homogeneous counterpart to Eq. (9) is Liapunov stable ([2], page 43).

The coordinate transformation

Q = (11)

can then be used to good purpose in either Eq. (9) or Eq. (10). The first

of these alternatives is developed in [1], with results only summarized

here. If D is the matrix whose columns are the eigenvectors of the equation

adjoint to the homogeneous part of Eq. (9), namely,

,T ' + T Q = 0

then by substituting Eq. (11) into Eq. (9) and premultiplying by D one can

obtain

Y = AY + ($P'T )-1' T (12)

'Twhere (D 'd@) is diagonal and

A= (D'T) - I'T )

is the diagonal matrix of eigenvalues A 1, ... 12n.
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As noted in the context of Eqs. (5) - (7), practical considerations

mandate the truncation of the transformed coordinates, so that the 12nxl

matrix Y must be replaced by the 2Nxl matrix Y. It is irrelevant whether the

truncation is imposed on Eq. (12) or on D in Eq. (11) and its counterpart D ,

as may be established formally by partitioning

A f (13)

and

into the 12nx2N partitions with one overbar to be preserved in truncation and

the remaining 12nx(12n-2N) matrices of eigenvectors to be removed in trun-

cation, and writing

T 1

'[ -] -l o

0 I , , )-1 (14)

The indicated commutativity of truncation of the transformation matrix and

inversion of D TdD is here established as a consequence of the diagonal

structure of the latter. Obviously it is advantageous to truncate before

inversion, because then there is no need even to calculate D and 4 , which

are generally of much larger dimension than 7 and T . Thus Eq. (12) can for

practical purposes be replaced by its truncated counterpart

Y Y + (0'T , ) -' - (15)

If the transformation in Eq. (11) is introduced into Eq. (10) rather

than into Eq. (9), then the calculation of the adjoint eigenvectors is not

necessary, since premultiplication of the result by D-1 produces

Y = AY + 1L (16)
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If truncation is imposed on Eq. (16), the result is

-- 1Y = AY + ( )L (17)

where (D-1) consists of the first 2N rows of the matrix i-l. As a practical

matter, however, 0-1 is not generally available, since for typical values of

n it is not feasible even to calculate all of the eigenvectors comprising

the columns of . In order to circumvent the problem, it was proposed in

[2] that Eq. (17) be replaced by

Y = AY + (~) L (18)

where

-t -T- -l-T

is a pseudoinverse of the 12nx2N matrix T. This substitution amounts to the

assumption that inversion and truncation of 0 are commutative operations.

COUNTER-EXAMPLE

Dr. William Hooker of the Lockheed Palo Alto Research Laboratories has

noted (in personal correspondence) that the above assumption is not always

valid, as demonstrated by a counter-example such as the following:

If

1 3
2 4

then

1 [-4 3]
D [2 -1

and

(-) [ -4 3]

whereas

= T- [ 1 2 ] (@-1)
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Dr. Hooker pointed out that Eq. (18) is the formal consequence of the substi-

tution of

Q = Y (20)

instead of Eq. (11) into Eq. (10), noting that while this substitution may

appear to be plausible its consequences are not equivalent to Eq. (17).

PURPOSE

Since in practical terms Eq. (17) is not directly available and Eq. (18)

is available upon inversion of the 2Nx2N (generally complex) matrix ~T, it

is important that we discover those conditions under which these equations

are equivalent. This is the primary purpose of this paper.

CONDITIONS FOR COMMUTATIVITY OF INVERSION AND TRUNCATION

Proposition: For any nonsingular square matrix M partitioned as

M = --- I
c d

and its truncated counterpart

the condition

c d + aTb =0 (21)

is necessary and sufficient for the equivalence

Mt = (M ) (22)

where

M = (M M) (23)

and (M-1) is the uppermost row-partition of M having the dimensions of MT.
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Proof: Since [5]

-1 [ (a-bd-c) -a-l b(d-ca -b)-l

-d 1 c(a-bd-lc) - (d-ca-lb)-1 (24)

then

-1 1 1 1 -1 1
(M) = [(a-bd-lc) -  -a-lb(d-ca-lb)- I ]

while

T  cT T T T Ta+ Tc I aT

Ic

As necessary and sufficient conditions for (M- 1 ) = we have

T T -I T -1 -1
(a a+cc) a = (a-bd -c) (25)

and

(a Ta+c Tc) cT = -a-l b(d-ca-l b)- (26)

The identities

T T -I T T T -1 T -1 -1 T -1 T T -1
(a a+c c) a = (a a+c c) [(a) ] = [(a T)- (a a+c c)]

and similarly

T T -1 T T -1 T T -1(aTa+cc) cT  = [(c )- (aa+cc)]-

and

-a-lb(d-ca-1b)- = - [(d-ca-lb)(a-lb)-1 -1

permit the inverses of Eqs. (25) and (26) to be written respectively as

(aT )- (a a+cc) = a-bd-l

and

(cT ) -(aTa+c c) = -(d-ca-lb)(a -b)-1
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or as

a + (aT) cT c = a-bd c

and

(a Ta+cTc)(a-lb) = _cT (d-ca -b)

or as

T -lT -1
[(a ) c +bd ]c = 0

and

aTb + cTca-1 b + cTd cTca-l b=

or as

(cTd+aTb)d-lc = 0 (27)

and

(cTd+a b) = 0 (28)

Satisfaction of Eq. (21) is sufficient for Eq. (27) and both necessary

and sufficient for Eq. (28), so the Proposition is proven.

INTERPRETATIONS FOR STRUCTURAL DYNAMICS

Eq. (22) is obviously valid when M is block diagonal, since then b=c=O

and Eq. (21) is trivially satisfied. This result is consistent with Eq. (14).

Eq. (22) is also valid when

c = -a and d = b (29)

and this result has an important physical interpretation for structural

dynamics.

In assessing conditions for the equivalence of Eqs. (17) and (18), we

must recall that the columns of D are the eigenvectors of Eqs. (9) and (10),

and hence the "mode shapes" of independent structural vibrations for certain

boundary conditions. The columns of the partitions 4 and 0 (see Eq. (14)) of

0 represent respectively those modes which are preserved and those which are

abandoned in truncation. Although several truncation criteria are useful,
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when the elastic structure is an appendage on a rigid body over which one

must maintain precise attitude control but not precise position control (as

in the spacecraft problem) the essential criterion is the truncation of modes

which have no influence on the attitude of the primary rigid body to which

the appendage is attached. If the mode shape is symmetric with respect to

the primary body, as in Fig. 1, then clearly it must be removed in truncation,

while antisymmetric modes, as in Fig. 2, must be preserved. In the special

case in which all modes are either symmetric or antisymmetric, it becomes

possible to formally justify removal of the former by the proposition of the

previous section, as will be shown.

Eq. (8) indicates that Eq. (13) must in greater detail be representable as

0. (30)

where X and A are diagonal matrices of eigenvalues in the preserved and

deleted categories, respectively, while T and 4 establish corresponding mode

shapes for the position variables in q. Application of the criterion in

Eq. (21) to Eq. (30) produces the requirement

+ = 0 (31)

for the equivalence of Eqs. (17) and (18), and this is for all practical

purposes never satisfied, since it reduces to the requirement

XX = ( = ,...,N; = l,...,6n-N) (32)

However, if the problem is restructured so that Eq. (8) is replaced by

Q [ 122 ". 6n 6n] (33)

in which q1,...,q3n and q3n+,...,q6n are coordinates defining parallel

motions of appendage nodes located symmetrically with respect to a central

rigid body (as would be possible for the system in Figs. 1 and 2, but not

generally so), then instead of Eq. (30) we can write
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-A S (34)

where the left partitions (comprising 4) contain the antisymmetric modes and

the right partitions contain the symmetric modes. Now Eq. (29) is satisfied,

and (with equations restructured as required by Eq. (33)) Eqs. (17) and (18)

are identical, since inversion and truncation are commutative.
I I

SPECIAL CASE WITH D = A = 0

When energy dissipation is ignored, and any rigid nodal bodies in the

appendage model are in the nominal state spinning about principal axes of
I I

inertia, then D = A = 0 [1] in Eq. (1), which becomes

M q + G q + K q =L (35)

In the undamped stable case of interest here all eigenvalues from Eqs.

(9) and (10) are imaginary, and may be designated in conjugate pairs as

±i~ for c 1,...,6n. The corresponding eigenvectors are however complex,

suggesting the designation

O= ~, + ire (36)

where the form of Eq. (8) requires

=a and ra --
an a (37)

If in Eq. (35) we have L =0, we can without contradiction substitute

-1*
q = z + yo z (38a)

q = -yaz + z (38b)

q= -yoz + i (38c)

into the homogeneous part of Eq. (35) to obtain

M (-yz + i) + G (-yaz + z) + K (iz + y- z) =0

or
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M 2 + (-M ya + G + K y )z + (-Gya + Ki )z = 0 (39)

A homogeneous solution of Eq. (35) is

ic t
qh = (a + iya)e a (40)

which when substituted yields

M (1a + iy )(- a2) + G (a +iy)(iC ) + K (a + iy) = 0

or

-M' a - Gyc a + K = 0 (41a)

and

-M yac2 + G OL + K y = 0 (41b)

and Eqs. (41a) and (41b) considered for a = 1,...,6n imply

-M-a2 _ G ya + K' = 0 (42a)

, , ' -1
-M yC + G + K ya = 0 (42b)

Thus with Eq. (42b) Eq. (39) reduces to

M + (-Gya + K 4)z = 0

which after premultiplication by IT becomes

~ TM i + (T K'~ - TGyG)z = 0

and with iT times Eq. (42a) this is

1T M (2 + a 2z) = 0

or with nonsingular TM ~,

S+ a 2z = 0 (43)

This same result arises if Eq. (38b) is equated to the derivative of Eq.

(38a), so that contradiction is avoided. The transformations in Eq. (38)

are not acceptable in the inhomogeneous case of Eq. (35) of primary interest

here, however, because these transformations directly imply Eq. (43). Instead
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Eq. (35) must in the inhomogeneous case be written in first order form, as

in Eqs. (9) and (10). In the latter case, one can accomplish the desired

transformation to uncoupled (pairs of) scalar equations with the real

transformation

Q = PZ (44)

where

PA -: (45)

and P-1 exists if the eigenvectors of the system are independent, as required

for stability in this undamped case. Substituting Eq. (45) into Eq. (10)

with D = A = 0 and premultiplying by P produces

i= - -  Z + P L  (46)

as may be confirmed by considering the homogeneous case and defining

Z = - --
F-1*z z

Eq. (46) offers a substantial advantage over Eqs. (12) and (16), which

involve complex numbers in Y, A, 4, and 4 , although Eq. (12) possesses an

advantage in requiring the inversion of only a diagonal matrix. The

inversion of P in Eq. (46) becomes particularly critical when (as required

for practical structural dynamics) this inversion is to be followed by, or

precede, coordinate truncation. We must once again face the critical question

raised in this paper, "Are truncation and inversion commutative?" More

explicitly, we must determine whether or not the truncation of Eq. (46) to

0 a---- +(P)L (47)

provides the same result as would be obtained by substituting
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r - 1 -Q A -- --- (48)

into Eq. (10) with D = A = 0 and premultiplying by

7 A(P P)-F (49)

This issue was not confronted in [2], where an affirmative answer was pre-

sumed. This presumption requires for its validity that

I -

P (P1) (51)

Eq. (50) is proven in an appendix of the referenced report which underlies

[1], but the validity of Eq. (51) has not been examined previously. With

the proposition presented as the central result of this paper (see Eqs. (21)

and (22)), it becomes evident that Eq. (51) is correct if any only if

TT T
-a y T~ + T y = 0 (52)

and this is an untenable hypothesis. Eq. (51) must be rejected, and the

very appealing real transformation represented by Eq. (48) cannot be accepted

as the formal equivalent of the truncation of the rigorously valid Eq. (46).

CONCLUSIONS

The necessary and sufficient conditions presented in Eq. (21) for the

commutativity of coordinate truncation and transformation matrix inversion

(see Eq. (22)) are quite severe. Two of the three transformation procedures

considered here for flexible appendages on constantly rotating rigid bodies

are essentially destroyed by the noncommutativity of these operations, since

for systems of realistic dimension it is not feasible to perform the necessary

matrix inversions prior to truncation, as an honest interpretation of the
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mathematics of the problem seems to require. This discouraging result is not

yet a definitive conclusion, because truncation is at best a process of ap-

proximation. It may yet be true that transformations such as Eqs. (20) and

(48) give satisfactory results in many cases; at this point however there

appears to be no acceptable evidence supporting this possibility.

The only one of the three transformation procedures considered here

which survives the commutativity test is that culminating in Eq. (15). This

procedure involves no inversion except for a diagonal matrix, but it is a

transformation to complex coordinates, and it generally requires not only

the selected system eigenvectors in T but also the corresponding adjoint

eigenvectors in 4 . In the important special case for which D = A = 0

this procedure is much simplified by the relationship [1]

(53)

but unless the appendage is nonrotating (so that G = 0) the transformations

involve complex numbers.
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Figure 1. Symmetric Mode.

Figure 2. Antisymmetric Mode.
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CHAPTER III

MATCHED ASYMPTOTIC EXPANSION

MODAL ANALYSIS OF ROTATING BEAMS

Andre' D. Colint

and

Peter W. Likinstt
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ABSTRACT

Modal analyses are presented.for the transverse vibrations of a uniform

Euler-Bernoulli beam, rotating about an axis orthogonal to the beam. Results

are obtained for a cantilever beam emanating radially from a base which is

rotating but not translating in inertial space, and for a beam with built-in

ends spanning the diameter of a ring which is rotating about its inertially

fixed symmetry axis. The equations are formulated in terms of a small

parameter e which is proportional to beam stiffness and inversely related to

mass density, length, rotation rate, and the pretension of the diametral

beam. The resulting singular perturbation problem is analyzed by the method

of matched asymptotic expansions, employing asymptotic expansions for the

central region and for boundary layers at either end. Results are expressed

literally, with sample numerical examples.
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MATCHED ASYMPTOTIC EXPANSION

MODAL ANALYSIS OF ROTATING BEAMS

Introduction

The rotating elastic beam has technological significance in the develop-

ment of helicopters and spin-stabilized space vehicles, and it has been analyzed

extensively. Because the linearized partial differential equations of

vibration have coefficients depending on the independent spatial variable,

closed form exact solutions are not available, and recourse to approximate

methods is necessary. Most investigators have adopted numerical analysis

procedures, obtaining results that are limited to the particular parameter

values considered. Yntema provides a good illustration of the extensive

application of Galerkin's method to many specific cases, expanding the

modes sought in terms of the nonrotating beam modes; Renard and Rakowski2

and Hughes and Fung3 use similar numerical methods to address specific

problems of interest in their work.

In this paper we seek literal expressions for approximate representations

of natural frequencies and mode shapes, using the method of matched asymptotic

expansions.4 Modal analyses of rotating structures have been developed

previously by Boyce and Handelman5 and by Abel and Kerr.6  In the former

paper the authors generate zeroth order solutions for a rotating beam with a

tip mass, applying a method developed by Moser 7 in which the linearly

independent solutions are taken in the form of B(x,l) exp[n-lh(x)], where n

is of the order of magnitude of the small perturbation parameter of the problem

and B(x,j) and h(x) are functions to be determined. In the paper by Abel and

Kerr the method of asymptotic expansions is applied to a rotating cable-

counterweighted space station for cables with small flexural rigidity. Match-

ing of central and boundary layer expansions is.employed to establish those

constants of integration not established by boundary conditions.
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In what follows the rotating Euler-Bernoulli beam vibration equations are

presented and a central solution expansion developed, and then boundary layer

expansions are developed and matched for the boundary conditions appropriate

for rotating beams of both "radial" and "diametral" configuration.

Rotating Beam Equations

The small transverse vibration W(C,t) of an Euler-Bernoulli beam with

constant flexural stiffness El and constant mass per unit length 1, under

the external axial load per unit length P( ), is characterized by8

ar 2
El (3 ' - + - a = 0 (1)

g a at

In what follows we address two distinct problems of beam vibration: the

radial rotating beam (Fig. 1), and the diametral rotating beam (Fig. 2). In

each case the beam is attached to a body B which has a prescribed constant

inertial angular velocity Q9 with the E,n, cartesian coordinate system axes

fixed in B and its origin-0 fixed both in B and in inertial space. In each

case the beam supports are built into B, constrained against translation and

rotation relative to B. Thus the boundary conditions are as follows:

Radial Beam: W(O,t) = (0,t) = -- (L,t) = 2 (L,t) = 0 (2)D ;2 ;3

Diametral Beam: W(L,t) = W(-L,t) = - (L,t) = 2 (-L,t) = 0 (3)

In each case the rotation induces axial strains in the beam, with

accompanying change in transverse stiffness characteristics. As has been

formally established by the use of nonlinear strain-displacement equations,9

one can for the small strain case continue to represent small transverse

vibrations by Equation (1), incorporating into P(E) the "centrifugal force."

Thus for the radial beam
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P(S) P v 2 I 2 L(2L 2 )/2 (4)

For the diametral beam, a pretensile load T is required to avoid instability

of the solution W(C,t) E 0; thus the effective axial "force" is

P( ) =T - p/ 2-d- = T - 2 2/2 (5)

with

T > ji2L2/2 (6)

By defining k2 such that

T A k2 2L2 /2

one can write Equations (4) and (5) together as

P(S) = 1 2 (k2L2 2)/2 (8)

where for the radial beam k2 = 1, and for the diametral beam k2 > 1.

Equation (1) can now be written in a form applicable to both radial and

diametral beams as

El -- (k2L _ 2) + 2 = 0 (9)

Representation in terms of dimensionless quantities is accomplished by

introducing

w A W/L

x A E/(Lk)

TA Qt

and dividing Equation (1) by v2 L/2, to obtain

- ( l-x2 ) 02+ 2 (10)

where
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2EI

P 2L4k4 
(11)

Equation (10) admits the separable product solution

w(x,T) = O(x) 0(T) (12)

with

IV - (l-x 2  ' 2 = 0 (13)

and

S+ 1 2 = 0 (14)2

for some constant 2, with prime denoting d/dx and dot denoting d/dT. Those

discrete constant values of A2 for which Equation (13) has nonzero solutions

are the system eigenvalues.

In terms of the separated dimensionless quantities in Equation (13),

the boundary conditions become for the radial beam (for which k = 1)

=(0) = 9'(0) = 4"(1) = 4"' (1) = 0 (15)

from Equation (2), and for the diametral beam

4(k- I) = (-k- ) = '(k-1 ) = '(-k- 1 ) = 0 (16)

from Equation (3).

The objective of this paper is to obtain explicit solutions for the

modal functions (x) in Equation (13) as asymptotic expansions in E, for

boundary conditions as in Equations (15) and (16). This process must also

yield asymptotic expansions for the system eigenvalues, which produce natural

frequencies of vibration from Equation (14) and the time normalization

T = Ot as

W= (17)

The solution technique employed is the method of matched asymptotic expansions,

as presented by Cole.4 Because in the limit as E + 0 Equation (13) becomes

only a second order differential equation, the solution of which cannot
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satisfy the four boundary conditions in Equation (15) or Equation (16), this

problem is classified as singular. The solution will be obtained as the

combination of an asymptotic expansion valid in the central region of the

beam, obtained from the reduced order differential equation arising in the

limit s - 0, and asymptotic expansions valid near the boundaries of the

beam.

Central Solution Expansion

For the central region of the beam, we represent the dependence of the

solution of Equation (13) upon the small parameter c by the asymptotic

expansion

4(x,e) = h0(x) + v1(C)hl(x) + V2(e)h2(x) + ... (18)

where vi(C) is for i = 1,2,... an asymptotic sequence to be established.

Similarly the eigenvalues represented by X2 in Equation (13) are expanded as

2 2 20 + K1(E)A1 + K2(E)A2 + ... (19)

for some asymptotic sequence Ki(E), i = 1,2,...

Substitution of Equations (18) and (19) into Equation (13) and considera-

tion of the limit e + 0 requires

[(l-x )h0] + Ah 0 = 0 (20)

Equation (20) is a Legendre equation of order n, where n(n+l) = 0 . The
10

general solution of Equation (20) is given by10

h0 = AUn(x) + BVn(x) (21)

where

2 2 2
Ao 2 A2(A 2_6)U (x) Al--- x + x- 4 (22)n 2 41

and

(A2-2) 3 0-2)(A -12)
Vn() x - 3! x + 5! x -... (23)
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The Legendre functions U (x) and V (x) converge for arbitrary A0 over then n

range -1 < x < 1, and either U n(x) or V n(x) terminates for those discrete

2
values of A0 for which0

2 = n(n+l) n = 0,1,2 ... (24)
0

with U (x) terminating for n even and V (x) terminating for n odd. The

terminated series can then be expressed in terms of a Legendre polynomial

P (x) by

Un(X) = Pn(x)U n(l )  n = 0,2,4,... (25a)

or

Vn(X) = Pn(x)Vn(1) n = 1,3,5,... (25b)

and the nonterminating series can be written in terms of Legendre functions

of the second kind, Qu(x), which are unbounded in the limit x = 1. These

observations are particularly significant for the radial beam, as indicated

by the boundary conditions in Equations (15) and (16).

In addition to the zeroth order approximation given by Equation (20),

one obtains higher order term equations from the substitution of Equations

(18) and (19) into Equation (13). If no restrictions on 1 (C) or K1(C)

were stipulated, the first equation involving terms above the zeroth order

would be

sh01V 1()[(l-x2)h I ] I- 1 ()Ah 1 () = K1 ()A 12 h 0  (26)

Further progress requires knowledge of the order relationship among K (c),

S1(6) and C. The possibility that K1 (6) = o(v1 (s)) and K1 (E) = o(c) is

2
rejected, because Equation (26) then indicates that A1 = 0. Similarly the

possibility that 6 = O(V1 (E)) and E = O(K 1 (E)) is rejected because of the

implication that h0IV = 0. Subject to later confirmation, we assume that

Vl(-) = o(c) and K (E) = o(C). Thus Equation (26) becomes either

By notational convention a( ) = o(b( )) implies Lim ( 0.
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[(1-x 2 )hL + A0h1  -A h0  1 (()] (27a)

or

[(1-x2 )hl] + A2hl = 0 [v 1 (E) = o(K(E:))] (27b)

In order to proceed further with this calculation we require v1 (E), which

must be established by the requirements of matching the expansions which are

valid at the boundaries. These expansions are different for the radial beam

and the diametral beam, and these cases must be treated separately.

Radial Beam Inner Expansion

In the neighborhood of the boundary x = 0, the term E4IV in Equation (13)

becomes important, and the previous solution is invalid. In order to develop

a solution which is valid in the "boundary layer" near x = 0, we introduce a

stretched coordinate

Sx -1 (E) (28)

assuming a(c) + 0 when E + 0. Into the original Equation (13) we now substi-

tute the asymptotic expansion

(xE) = p0 ()g 0 (i) + pl()g 1 (i ) + p2(s)g2(x) + ... (29)

where pi(c) constitute an asymptotic sequence for i = 0,1,2,..., to obtain

p0(s) d ( g0  ) pl( ) d g1 (3 1
- ( 2) dx 2() dx J

2 2 0  (c ) d 2 0() p ) d2 g1 +
(1-a (2)x ) + -2 + .

a2(c) d() dx2

Fp0 (s) dg 0  P1 (c)dg(x)+ 2c(r)x [ --) di + a() d.. +

- A2 IP0 (E) g0 (i) + pl() gl()+ ... ]

- K<l()A 1 [P() go(x) + pl(C) g(c) + ...] = 0
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The coordinate scaling factor o(E) is chosen so as to maintain the

highest order derivative and an additional term or terms in the lowest order

approximation of this expansion. The choice

F = 81/2 (30)

then produces the dominant boundary layer equation

d 4 g0 ( ) d 2 g0(W) (31)

dx4  dx2

which after two integrations provides

d2g0 x) _
d2  = C0e + Cle (32)

dx

The inner expansion in Equation (29) in the limit as x -+ m must match the

central expansion in Equation (18) in the limit as x + 0, so that C1 in

Equation (32) must be zero. Two more integrations then provide g0(i), which

with the boundary conditions

g0 (x) d= =K0  0 (33)

xt=0 x=0

must be

g0 (k) = C0 (( - 1 + e - ) (34)

In order to match the approximation of the inner expansion (Equation (29))

provided by Equation (34) with the approximation of the central expansion

(Equation (18)) provided by Equation (21) we can introduce an intermediate

limit defined by the coordinate measure

x A x-1()

with n(E) + 0 as E = 0 and C1/2 = o(0(E)), so that in the limit as e£ 0 with

x fixed, x = n(E)x n- 0 and i = n(E)E-1 2x > . Matching then requires
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e'0 {h 0  + )hl( ) + -px ) + ... } ) + + 0
x fixed (n) (35)

Expanding h0(x) and hl(x) as Taylor series about the origin x = 0 and substi-

tuting Equation (34) for g0 (i), we find

Lim
Ce0 {h0 (0) + x...h'(O) + + Vl(:)hl(0) + Vl(E)nx hl(0) + ...

xn fixed
-1/2

P- 0 (C)C0 (nE- x -1 + e n)+ ... } = 0 (36)

Equation (36) is satisfied by

p0 ) = 1/2 (37)

V1(s) = C1/2 (38)

h0 (0 ) = 0 (39)

h0(0) = C0  (40)

h 1(0) = -CO  (41)

which conforms to the assumption V i() = o(e) preceding Equation (27a).

With Equations (39) and (40) we can return to Equations (21) - (23) to

conclude that

A = 0 and B = CO  (42)

Thus first approximations are fully established for both inner expansion

(Equation (29)) and central expansion (Equation (18)), in terms of the constant

C0 . Moreover, we can now recognize that the first approximation of the

eigenvalue expansion in Equation (19) must belong to the set of discrete

values for which the Legendre function V (x) in Equation (23) is a finiten

series; otherwise Vn(1) and 0(1) become infinite. Thus Equation (24) must

be satisfied for n odd, so that

2
A0 = 2, 12, 30, ... n(n+l) for n = 1,.3, ... (43)
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and the natural frequencies identified in Equation (17) are approximately

10 = 0, OV, 9-, ... , [n(n+l)/2]1/ 2 for n = 1, 3, ... (44)

The next step is the determination of h (x) in Equation (18). We make

use here of the orthonormality of the two different solutions a(x,E) and

cp(x,) corresponding to the distinct eigenvalues Xa and X , which requires

J1 Oac dx =s6a (45)

where o6 is the Kronecker delta. Equation (45) can be proven for a # 8 by

substituting 0a for 0 in Equation (13), multiplying the equation by 4 and

integrating twice by parts, using Equation (15) to obtain

rI II 1 1I t

-8 0 f( 1
d x + (1-x2) a 8dx - S' c 6 = 0

and then repeating the process with a and a exchanged, finally subtracting

2 2
these results from one another and noting that 2 - 2 # 0. The validity

of Equation (45) for S = a is freely prescribed, since there is a free

constant factor to be prescribed in any solution to Equation (13).

If a and 4 are asymptotic expansions in 6, then Equation (45) equates

an asymptotic expansion to 6 a. For this equation to be valid for any E,

the zeroth order term must be 6 S, and all other terms must be zero. We

have established that in the inner boundary layer the first term is of order

-1/2 (see Equations (29) and (37)), and moreover the boundary layer "thickness"

is of order E1/2 (see Equation (30)). Thus the contribution of the inner

expansion to Equation (45) is limited to terms of order e and above. If we

now assume (subject to later confirmation) that the outer expansion contri-

bution to Equation (45) is also of lower order (higher power) than 1/2, then

we can substitute the central expansion (Equation (18)) alone into Equation (45)

to obtain, for a single mode (S = a)
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h (x)dx = 1 (46)

L h0 (x)hl(x)dx = 0 (47)

The combination of Equations (21), (42), and (46) yields

C= v2 (x)dx (48)

Equation (47) is useful in resolving the choice between Equations (27a)

and (27b); in the latter case hl(x) is simply a multiple of h0 (x), and

Equation (47) is impossible. Thus we now conclude (noting Equation (38)) that

K( = () = 1 1/2 (49)

and hl(x) must satisfy Equation (27a) and Equation (41).

2
Equation (27a) involves AI, which can be determined by multiplying

Equation (27a) by h0 (x) and integrating by parts from 0 to 1, to obtain

(l-x2)hlh0  (-x2)hlh0dx
1 J10 1 0

0 0

or, with Equations (39), (46), and (47) and another integration by parts,

2' (12,, 2-(1-x )h0h + [(l-x )h01 h1dx = - A1

Substituting - A0h0 from Equation (20) into the final integrand and utilizing

Equation (47) again, we find
2

A1 = - h 0 (0)hl(0)

With Equations (40), (41), and (48), this becomes
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A [ V2 (x)dx (50)
1 o n

More specifically, corresponding to the first two modes defined by Equation (43),

21 [ 1 V2(x)dx = 1 x2dx = 3 (51a)

and

A2 1 2 (x)dx

= (x - - dx -- = 15.75 (51b)

2 2
(It may be noted that Equations (43) and (49) for A and A1  could alterna-

tively have been obtained from Equation (45).)

2
Finally we can return to Equation (27a) with A1 from Equation (49) and

seek hl(x) from that combination. The homogeneous solution is of course

merely some factor k1 times ho, and since h0 (0) = 0 this leaves the particu-

lar solution hl(x) to satisfy the boundary condition on h1 (0) in Equation (41).

Thus

h l (x) = h l ( x ) + klh0  (52)

where from Equation (47)

0= f hl(x)h0 (x)dx = 1 l(x)h0 (x)dx + k1 f h0dx

so that

k h= (x)h 0 (x)dx (53)
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We can proceed without a more explicit expression for hl(x) to accomplish

the necessary matching with an outer asymptotic expansion to be obtained for

a boundary layer near the free end of the beam.

Radial Beam Outer Expansion

At the free end of the radial beam in Figure 1 we must again satisfy

boundary conditions which cannot be reconciled with the central expansion.

We therefore introduce another boundary layer coordinate

x *A (l-x)a- (E) (54)

with a(c) - 0 when E -+ 0.

Into the original Equation (13) we now substitute the asymptotic expansion

(x,E) = 6d()f 0 (x ) + 61 ( )fl(x ) + ... (55)

where 6i(e) constitute an asymptotic sequence for i = 0, 1, 2, ... , to obtain

4 * 4 *

a *(4) dx* a ( ) dx+

[ 2 * *
A [6(E)fo (x ) + 60 (E) df0 (x ) 61(+ ) dfl(x)

- 2 (1-a(C)x ) + + ...
dx dx

- Ao [0(E)f(x ) + 61 )f(x ) + ... ]

- K1() A1 [60 ()f 0 (x ) + 1 + ) + ... ] = 0 (56)

The choice

a (s) = E1/3 (57)

produces from Equation (56) the dominant boundary layer equation

d f0 (x) * d2f (x*) df (x*)

*4 - 2x - 2 = 0 (58)
dx dx dx

75



Boundary conditions at x = 1 must be satisfied; from Equations (15) and (54)

3 *
d f0 (x )

= 0 (59)*3 *
dx x =0

and

2 *

d *f( = 0 (60)
dx 2  x =0

Integrating Equation (58) and enforcing Equation (59) produces

d3 f(x* df (x*)

dx3  = x (61)
dx dx

which can be recognized as an Airy equation in the variable df 0 (x)/dx, with

a boundary condition established by Equation (60), and solutions available11

* *
as a linear combination of the Airy integrals Ai(x ) and Bi(x ). However,

Bi(x ) cannot appear in the solution for df0 (x )/dx because it grows expo-

nentially with some power of x , and matching with the central solution
* (x

expansion in the limit as x -+ would be impossible. Moreover, Ai(x )

cannot appear in the solution because it cannot meet the boundary condition

at x = 0 imposed by Equation (60). Thus the required solution to Equation

(61) must be zero, implying

f 0 (x*) = DO  (62)

a constant.

In order to match the outer expansion in Equation (55) with the central

expansion in Equation (18), we again introduce an intermediate limit defined by

the coordinate measure

x = (1 - x)n(E) - 1

with 1(E) - 0 as C - 0 and 1/3 _ o(1n()), so that in the limit as e - 0 with

x fixed, (l-x) = x n(c) + 0 and x = (l-x)-1/3 = x n() + . Matching
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in this limit then requires (in view of Equation (38))

Lim 1/2
6-0 {h0o(1-x ) + E h (1-+X ) +.

x fixed

- 60 ()fo-1/3 ) + 61(1)flE-1/3x) + ... } = 0

Expanding ho, h1 and h2 as Taylor series about xI = 0 yields, with Equation (62),

ELm' 1 " 2 2 1 "' 3 3E+0 {h 0 (1) - h0 (1)x + 2-h (1)nx + 3--h (1)nx + ...
x fixed + 30

Ti

+ E/2hl(1) - 1/2h(1) nx+ ... +V2 (s)h 2 (1) +

- 6 0 (C)D 0 - 6 1 ()fl(E-/3nx) - 62(E)f2 -1/3x) ) + o...}-= (63)

Matching requirements suggest the tentative adoption of the following equations:

V2 ( ) = E (64)

h0 (1) = DO  (65)

6 ( 0 (66)

61 () = 1/3 (67)

62 () = 1/2 (68)

63(E) = C2/3 (69)

64(C) = £5/6 (70)

65(E) = C (71)

and so forth. These values are compatible with the assumption made prior to

Equation (46), and provide the means to return to Equation (56) to establish

differential equations to be solved for fl(x), f2 (x *), .... With Equations

(49), (57), and (66) - (71), Equation (56) can be rewritten as follows:
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/ d4 f d2 f0  df0
S* 2x 2*4 *2 *2

dx 4  dx dx

1/3 f d2f *2 d2f df * df 20' 1 * 1 *20
+ E - 2x *2 + x 2 + 2x A 0

dx dx dx dx dx

2/3[ d f d2f5 2 d df3*4 *2
dx dx dx

d f d f d f df df

+ I 2x + x 2 + 2x - Af
*4 *2 d2 * * 1

dx 4  dx*2  dx dx dx

2/3 d~fdf df df
+ K 2x + x 2 + 2x AfJ -

*4 *2 *2 * *

assuming that 2 in Equation (19).
assuming that "2() = o(2/3) in Equation (19).

Tha validity of Equation (72) for any c requires that each of the ex-

pressions in square brackets be zero. The first such equation has already

been recorded as Equation (58), and its solution for the required boundary

conditions has been given as Equation (62). The second bracketed expression

in Equation (72) then simplifies to

4 2

*4 *2 * 00 (73)
dx dx dx

For fl(x ) and terms of higher index the boundary conditions on the free end are

d2
d f.

*2 = 0 j = 1, 2, 3, ... (74)
dx x =0

d3

d f.

*3 = 0 j = 1, 2, 3, ... (75)
dx 3  x =0
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Equation (73) has the same homogeneous solution as Equation (58), and in

addition the particular solution

- * 12 *
fl (x) - D0x (76)

Satisfaction of the boundary conditions again eliminates the Airy integrals

in the general solution, so that Equation (76) with Equation (65) provides the

total solution.

Now we can evaluate the validity of Equation (67) by returning to

Equation (63) to examine the matching of the fl term and the h0 (1) term,

which together become

-h0(1)nx 61 (E)fl(E /3x ) =

-h ) 1 /3h 2(i) -1/331 2
[-ho(1) + 2 h - () onx0 = [-h0 (1) + -A0 h0 (l)]nx

The expression in brackets is indeed zero, as required by Equation (20)

evaluated at x = 1, and these terms are properly matched.

The third bracketed expression in Equation (72) has the same structure as

the first, and admits a solution reduced by boundary conditions to a constant,

which for matching in Equation (63) must be hl(1); thus

f2 (x ) = hl(l) (78)

The bracketed term multiplied by 1/3 in Equation (72) combines with

Equations (76) and (65) to provide

d f3  , d2f df3
2x 2 =

*4 *2 *
dx dx dx

2 2 *
(2 - A) Ah 0 (1)x /2 (79)

with the particular solution

f3(x*) = A(A 0 - 2) h0 (1)x*2 /16 (80)
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and the general solution involving Airy integrals Ai and Bi as previously.

Again Bi must be rejected for its exponential growth, which precludes

matching for x - , but here Ai cannot be rejected, and the general solution

to Equation (79) becomes

( 2 *2
f3(x ) = A 0( - 2)h 0 (1)x /16 + D1  Ai( )dE + D2  (81)

Equation (74) imposes on solution (81) a boundary condition providing

2 2
AO(A O- 2)h0 (1)

8Ai (0) (82)

with Ai (0) from tables.11

Matching in Equation (63) requires that the term involving h0 (1) sum to

zero in the limit with the unwritten term - 63 ()f 3( -1/3nx ). That portion

of f3 (x ) involving D1 and D2 decays exponentially, so that matching requires

only

1 " 2 2 2/3 2 2 -2/3 2 2
2h0(1)TxI - 0 AO 0 - 2)h 0 (1)E 2 / 3 x 2/16

" 20 2 2
= [8h 0 (1) - (AO - 2)A h 0 (1)n 2x 2 /16 = 0

This equality holds since the expression in brackets is zero by virtue of

Equation (20), which may be written in terms of Taylor series about x = 1 as

[-2h 0 (l) + A h0 (1)] + [4h 0 (1) + 2ho(1) - Ao2h 0 (1)](1 - x)

"'" 1 2 2 0
+ [-3h 0 (1) - 3h0 (1) +- A2 0(1)](1 - x) + 0 (83)

so that each of the bracketed expressions is zero.
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Solving the three equations implied by Equation (83) simultaneously

produces

h0 (1) = 1 A h0 (1) (84)

" 1 2 (85)
h0(1) = (A0 -2)A 0 h0 (1) (85)

h0 (1) = 4 (A-6)(A0-2)A0h 0 (1) (86)

The next step is the solution of the equation involving the coefficient

of £1/2 in Equation (72). With Equations (78), (62) and (65), this equation

becomes

d4f d2f df
d 4 4 f 4 h121f 4 2 24 2x f4 Ahl(1) + Ah0(1) (87)

*4
dx dx dx

The boundary conditions in Equations (74) and (75) limit the solution of

Equation (87) to

f1 2h 2 *
f4 ( x ) = - (Ahl(1) + A h0 (1))x* (88)

Matching of the f 4 (x*) term with the h1 (1) term in Equation (63) requires

- 1/2 h(1)nxn + 12 5/6 (A2hl (1) + Al2h (1))E-/3 nx

1 2 2 0 1 1/2
= [-h1(l) + - (A hl(1) + A h0 (1))] /2x = 0

which is assured by Equation (27a) with x = 1.

To complete the projected treatment of the outer boundary layer, we set the

last bracketed expression in Equation (72) to zero, noting Equation (81).

Since our concern here is not with an exact expression for f5 (x*) but only with

enough information about f5 (x.) as x oo to establish the matching and verify

Equation (71), we write the equation for f 5 (x ) as

df d2f df A2
5 * 5 05 2 2 2-dx *2 2 (A -6)(A-2) 6 h0 (1)x*2 + TST (89)

dx dx d81
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where TST represents transcendentally small terms which have no influence on

the matching process. Equation (89) is easily integrated, to obtain a result

presented here as

df5 (A2 -6)(A 2 -2)Ah0(1)x *2  d3 f D
+ + TST (90)* 96 * *3

dx 2x dx 2x

Two differentiations yield the approximation

3 2 2

d 5 _ (A-6)(A0 -2)A0h0(1) + O *- 3

+ 0(x )
dx*3  48

which in turn permits Equation (90) to be written as

df5 _(2 2 2 *2
df5  (A 2-6)(A -2)A0h 0 (1)x*

dx* 96dx

(A 2-6)(A -2)Ah(l)] 
1[D3 + 48 2x*

+ O(n now + TST

Integration now yields the approximation

2 2 2 *3
S ( (A-2)A0h 0 (1)x

f (x) 288

(A0-6)(A2-2)Ah
0 (1) £nx

3 48 2 + D4

+ O(x* - 3 ) + TST (91)

The constants D3 and D4 must for matching be given by

2 2 2
(A2-6)(A0-2)A0h0 (1)

3 
48

The notation X = O(x * - 3 ) implies that Lim Xx is bounded

x82
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and in view of Equation (64),

D4 = h2 (l)

Now matching in Equation (63) is assured by the identity

1 "' 33 -1/3
3- h0 (1)nx 3 (E f( rx) =

h0 (1) + (A2-6)(A0-2)A0h0 (1) 1
31 288 3 n

which follows from Equation (86).

Thus the outer expansion in Equation (55) has been completed to order E.

Radial Beam Solution Summary

In brief summary, the rotating radial beam in Figure 1, as characterized

by transverse vibration equations (Equation (10)) with cantilever boundary

conditions (Equation (15)) has natural frequencies given by Equation (17),

with A2 from Equation (19) and (49) available as

X2 2  1/2 2= 0+EA + 1I +..

2 2

where A0 is given for the sequence of modes by Equation (43) and A1 is given

for all modes by Equation (50) and for the first two modes explicitly by

Equation (51). Although these results could be compared for specific spin

rates to the computer-generated frequencies presented by Yntema and others,

it is more revealing to compare to the formula for the first mode used by

Vigneron:

1 = NR + 1.193&2

2
where wNR is the lowest natural frequency of the nonrotating beam, which is,

in view of Equation (11), given by

WNR (3.515)2 EI/(pL) = (3.515) 2 £/2
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Thus, in terms of our c, Vigneron uses

W2 - Q2(1.193 + 3.5152e/2) (92)

For comparison, our approximation is

2 = n2( + 2.12/v72) (93)

These two approximations are protrayed graphically in Figure 3. More precise

estimates indicate that Equation (93) gives better results for sufficiently

small E (and yields the correct limiting case of the cable frequency when

E - 0), but Equation (92) is more accurate for sufficiently large e.

The mode shapes have been developed in this paper in terms of asymptotic

expansions as follows:

Inner boundary layer expansion

-12
1/2 -12 -xe

(x,E) = C0E/2(- x- 1 + e ) + ...

Central expansion

(x,e) = h0 (x) + 6l/2hl(x) + Eh2 (x) + ...

Outer boundary layer expansion

1 2 + 1/2
O(x,E) = h0(1) - A0(1)(1x) + 5 hl)

+ (A-2)h0 () (-x)2/16

- 1 /2(A hl ( 1 ) + A2h(1)) ( l -x)

(A-2_6)(Ao-2)Ah 0 (1) (l-x) 3/288

+ h 2 (1) + ...

2 2
In these expressions CO, h0 (x), hl(x), AO and A2 come respectively from

Equations (48), (21) and (42), (52), (43), and (50). Note that despite the

large number of terms evaluated in the outer boundary layer the final expansion

contains no terms involving powers of E above 1/2.
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Diametral Beam Outer Expansions

The differential equation and central solution expansion are the same

for radial and diametral beams, so that with the exception of the boundary

conditions in Equations (2) - (3) and (15) - (16) the development is the

same for both beams through Equation (27), with k - 1 for the radial beam

and k > 1 for the diametral beam. Different boundary conditions imply differ-

ent boundary layer solutions, and in the case of the diametral beam symmetry

indicates that the same boundary layer expansions apply at x = k-  and x -k-1

In what follows we develop the solution near x = k- 1

As previously, we define a stretched coordinate

x = (k - x) - (E )

where 8(c) - 0 as e 0, and introduce the expansion

((x,E) = Y0 ( )F 0 (x) + y 1 (E)F 1 (x) + ... (94)

where yi() constitute an asymptotic sequence, i = 0, 1, 2, .... Equation

(13) then becomes

4 4[ YO() d FO Y1 (E) d 4F1
4 (E) d-4 84 -4) d"

(E) dx (6 .

_-1 2]Y0(c) d 2 F 0 + y 1 () d2- '1 - (k1 - $(s)x) ( d +
2 (E) dx 2 (c) dx2

-1 (E) dO Y 1(c) dF1- 2(k 1 - LB(s)x) ) + $(s) +  ."

A0 [y 0 (e)F 0 + yl(s)g 1 + ... ]

- K1 (E)A [Y 0 ( )F 0 + Y1 ()F+ ... ] = 0 (95)

Under the assumption that pretension T is sufficient to maintain 1 - k- 2 = 0(1),

we can choose

B(l) = 1/2 (96)
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and obtain from Equation (95) the dominant boundary layer equation

d F0 (x) *2 d2 F0(x)
k= 0 (97)-4 -2dx dx

where k 2 A (1 - k-2). Equation (97) can be solved as was Equation (31), since

F0 and g0 have the same boundary conditions (see Equation (33)) with the result

-*- -k*x

FO(x) = A0 (k x - 1 + e ) (98)

where A0 is to be determined by matching with the central solution expansion.

Matching requires the introduction of the intermediate limit defined by

-1 -1
x = (k - x)n (s) (99)

with n(c) - 0 as e 0 and e1/2 = o(n()), so that in the limit as E - 0 with

x fixed, (k- - x) = x  -- 0 and = (k1 - x) - / = x T)-1/2 . Matching

in this limit requires, from Equations (18) and (95)

Lim
0fixed h0 (x) + l()hl(x) + ... - y 0 ()F 0 (x) - y1 ()Fl() - ... = 0

x fixed

k-1
Expanding in Taylor series about x = k-l and substituting Equation (98)

produces

Lim -1 ' -1 " -1 2 2 -1
sC0 h (k ) -h0(k )nx+ + (k + V ()hl(k )

x fixed 0  -k*- /2 ,x

- v1 (s)hl(k- )x + ... - y0 (E)A0 (k*c /
2 nx - 1 + e

- ()F1 (-1/2nx ) - ... = 0 (100)

Matching requirements suggest the following:

h0 (k-1) = 0 (101)

YO0 () =1/2 (102)

* ' -1

A0k = -h0 (k ) (103)
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V1 ( ) =  1/2 (104)

A0  - h (k - 1) (105)

With this identification, we can proceed to establish hl(x) and F1(x), and

then return to Equation (100) to confirm the matching. We can also use

Equation (101) in conjunction with the Legendre function solution for h0
in Equation (21) to obtain values for A0.

The singularity of the Legendre functions for unity argument does not

present a problem for the diametral beam, since k-1 < 1. Thus both U (x) and
n

V (x) are permissible solutions, subject to Equation (101). The symmetric

or "even" modes are represented by U (x), and the antisymmetric or "odd" modes

are represented by Vn(x) , as indicated by Equations (22) and (23), which

together with Equation (101) provide solutions for A0. These results are

illustrated numerically in the section which follows the present section on

the boundary layer expansion.

Orthogonality of the modal functions (x) corresponding to different

2 2 2discrete values of , say and , can be established as for the radiala y a ca

beam, to obtain the orthogonality relationship (as in Equation (45))

k-1

f-1_ Bdx 6c 8  
(106)

For the terms in the asymptotic expansion of a single modal function, we

now have (in parallel with Equations (46) and (47))

-1 h (x)dx 1 (107)

-1

L h0 (x)hl(x)dx = 0 (108)
-k

under the same conditions affecting the boundary layer solution.
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Thus we have for the even modes, from Equations (107) and (21), with B = 0,

-1

/1  A2U2(x)dx = 1
-k

so that

-1 ]-

A2  k 1 Un(x)dx (109)
-k-

and similarly for the odd modes A = 0 and

-1  -1

- -1 nB2  -1k V(x)dx (110)

Equations (107) and (108) indicate that Equations (49) and (27a) apply

2
to the diametral beam also. We can now obtain a new expression for A1 by

multiplying Equation (27a) by h0 and then integrating from -k
- to k-1 , to

obtain, after noting Equations (107) and (108),

-1

S-1 [(l-x 2 )hi] h dx = -A2

Two integrations by parts, utilizing boundary conditions established by
_-l

Equation (101) and its counterpart at x = -k-1, and involving Equation (20)

and Equation (108), produce

2 2 ' k -
A1 = (I - x )h0h k1 -1

For the odd modes the slope is the same at both ends but the displacement is

opposite in sign; for the even modes this relationship is reversed. Thus in

any case

A =(1 - k-2)h 0 (k)h ( k
-

1 ) (111)
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By using Equation (105) and then Equation (103), we can rewrite Equation

(111) as

A2 = 2kl(k -2 1)/2 [ho(k-l)] 2  (112)

To obtain numerical answers from Equation (112) one must use the derivative

of h0 (x) as found in Equation (21) together with Equation (109) for even modes

and Equation (110) for odd modes.

2
Now we could return with A to Equation (27a) to solve for hl(x), using

the boundary conditions established by matching in Equation (100). Satisfied

that hl(x) is fully determined, we now seek to establish the second term in

the asymptotic expansion in Equation (95). The matching requirement in

Equation (100) suggests that

Y1 ( 6 ) =  (113)

Under this assumption, and with Equations (102) and (96), we can obtain from

Equation (95) the following equation to be solved for Fl(x):

4 2 2d F d2F dF d2F
1 ( -(1i2 1 -1 0 -1 0(i-k - 2 )  = 2k + 2k-.2-4 -2-2 -2dx dx dx

or, in view of Equations (98) and the definition of k

dF d2
1 *2 1 --1 * -k*x-xd-4  k -* = 2k A0k [l - e +xk*e ] (114)

--4 -2 0
dx dx

Recall that A0k is fully determined by Equation (103).

Equation (114) has the same homogeneous solution as Equation (97), and in

addition the particular solution Fl () such that

2-
1 -1 A* 1 - -k*x 1-2 -k*x- 2k A0k [ *2 +4 xe -- x (115)

dx k 4k

Proceeding again in parallel with the solution of Equation (31), we observe

that for the total solution
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d F - dF
d2F1 -k*x 1d2

d = Ale --2
dx dx

After two integrations, with integration constants A2 and A3 introduced, and

with Al and A2 removed by imposition of boundary conditions on Fl(x) and

dFl/dx, the final solution becomes

-1
3k A0-1 *2-2 -k*x 3k 0 - -k*x -k*x

F(x)= -k Ak x e - *2 xe -A3e
0  2k 3

-1 A-1
0 - 2kA 0  * -
kA x + -kA 3  (116)

k k*2 3 3  (116)

Since A0 in Equation (116) is known from Equation (103), the only free

constant in this expression is A3 ; this unknown will be established by the

matching process. Examination of Equation (116) reveals that matching in

Equation (100) requires that

Lim 1 " -l 2x2 ' -1 -1/2f0 2 h0  ()h(k )x -- y(C)F1 ( x) = 0 (117)
x Tfixed

If the first three terms in Fl(x) in Equation (116) are ignored as trans-

cendentally small, and Equations (104) and (113) are substituted, Equation

(117) is satisfied up to terms below e if

-1
2kA 0  * ' -1k2  k A3 = hl(k ) (118)

and

-1
0  1 " -1

* h0 (k ) (119)
k

Equation (118) provides the required value for A3, but Equation (119)

must be an identity if the proposed solution is to be verified. This equation

can be confirmed by using Equation (103) to rewrite Equation (119), noting the

definition of k , as
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(1 - k2)h 0 (k) - 2k-lh0(k-) = 0 (120)

The validity of Equation (120) follows from Equation (20) with x = k- , since

h0 (k-l) = 0 by Equation (101). Thus the proposed solution is established.

Diametral Beam Solution Summary

The rotating pretensioned diametral beam in Figure 2, as characterized

by transverse vibration equations (Equation (10)) with fixed end boundary

conditions (Equation (16)) has natural frequencies given by Equation (17),

with X2 from Equation (19) and (49) available as

X2 2 1/2 2A= A0 + E A + ...
21

where A2 is given by Equation (112) in terms of h0 from Equation (21), and

where A2 is given for even modes by the combination of Equations (22) and (101)

in the form

-1 1 2 1 2 2 6k-2
(k ) 21 0 41 0 6k )

1 2 2 -2 2 -2
6f1 0Po - 6k )(P 2 - 20k ) + ... = 0 (121)

where pF A A0/k 2, and for the odd modes from Equations (23) and (101) by

-1 1 2 -2 1 2 -2 2 -2
Vn(k ) = 1 3! ( 0 - 2k ) + (0 - 2k 2 )(~- 12k 2 ) - ... =0

(122)

These equations have obvious solutions for particular values of k2; for

2 -6k2  2 2example with p = 6k Equation (121) yields p = 2 and hence k = 3 and

A2 = 6, and with 2 = 20k 2 Equation (121) yields either the "first mode" with

P0 = 14.8 and hence k2 = 1.35 and A = 20 or the "third" mode with 0 = 2.32
2 2

and hence k2 = 8.6 and A0 = 20. More generally however one finds for any

value of parameter k a spectrum of discrete solutions for 2. In the limiting
2 -1case k2 + o the Legendre function Un(k- ) for the even modes becomes the
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cosine function, implying 'O = T /4, and corresponding to the vibrating taut

string, and in the neighborhood of the singularity at k2 = 1 we find 2 -+ 0.

Similarly for the odd modes Vn(k-) becomes the sine for k2  o, implying

2 2 2 2 2
0 = v , and at k = 1, PO = 2. Figures 4 and 5 portray the variations of p0

(and hence natural frequencies) with k2 for the first and second modes

respectively.

In addition to the natural frequency equations, we have developed

expressions for mode shapes in the form of asymptotic expansions as follows:

Central expansion

(x,c) = h 0 (x) + C /2hl(X) + ...

Boundary layer expansion near x = k-1

S1/2 h0 (k--1/2
q(x,-) -(k- + [i - e - k ( k l - x )

k

+ k-l h0 (k - )k (k - x) 2e-k*(k- E-1/2

h (k )-1 -1/23 1/2k -1 h0 (k (k -  x)e-k*(k -x)- /

+ k *3 (k -x)e

k*4

-1

+ h1(k 2k lh)k + 1/2h (-1 )-1/2

0k - 2 1/2' -1 -1
k h (k-i

+ (k -x) + hl(k )(k - x)
k 0

2k h (k() ,k
- E [ *4 + hl(k ) + ...

and a similar boundary layer near x = -k-  In these expressions k 2 = (1 - k-2)

hl(x) is the solution of Equation (27a) with A2 from Equation (112), and h0(x)
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is given by Equation (21), with the constants A and B in Equation (21)

established by Equations (109) and (110). Figures 6 and 7 are plots of

h (s) for modes one and two respectively, with s A F/L.

Conclusions

The method of matched asymptotic expansions has a unique advantage in the

modal analysis of rapidly rotating beams, in that the results are literal

rather than numerical, and thus are applicable at once to a range of values

of the system parameters, which include beam density, stiffness, pretension,

and spin rate. The primary disadvantage is the approximate nature of the

results, although the order of the approximation is well established.

Application of this method to modal analysis of rotating plates is also

feasible in some cases,1 2 as will be reported in a separate paper.

93



REFERENCES

1. Yntema, R.T., "Simplified Procedures and Charts for the Rapid Estimation
of Bending Frequencies of Rotating Beams," NASA TN-3459, 1955.

2. Renard, M.L., and Rakowski, J.E., "Equatorial Vibrations of a Long
Flexible Boom on a Spin-Stabilized Satellite of Non-zero Radius,"
Proceedings of the 20th Congress of the International Astronautical
Federation (Mar del Plata, Argentina, 1969), Pergamon Press, PWN-Polish
Scientific Publishers, Poland, 1969, pp. 35-52.

3. Hughes, P.C., and Fung, J.C., "Liapunov Stability of Spinning Satellites
with Long, Flexible Appendages," Celestial Mechanics, Vol. 4, Nos. 3-4,
pp. 295-308, 1971.

4. Cole, J.D., Perturbation Methods in Applied Mathematics, Blaisdell
Publishing Co., Waltham, Mass., 1968.

5. Boyce, W.E., and Handelman, G., "Vibrations of Rotating Beams with
Tip Mass," Zeitschrift fur angewandte Mathematik und Physic, Vol. 12,
Fasc. 5, pp. 369-391, 1961.

6. Abel, J.M., and Kerr, W.C., "Transverse Vibrations of a Rotating
Counterweighted Cable of Small Flexural Rigidity," AIAA J., Vol. 9,
No. 12, pp. 2326-2332, 1971.

7. Moser, J., "Singular Perturbation of Eigenvalue Problems for Linear
Differential.Equations of Even Order," Communication of Pure and
Applied Mathematics, Vol. 8, No. 2, pp. 251-278, 1955.

8. Meirovitch, L., Analytical Methods in Vibrations, The MacMillan Co.,
New York, 1967, page 442.

9. Likins, P.W., Barbera, F.J., and Baddeley, V., "Mathematical Modeling
of Spinning Elastic Bodies for Modal Analysis," AIAA Journal, Vol. 11,
No. 9, April 1973, pp. 1251-1258.

10. Rainville, E.D., Intermediate Courses in Differential Equations,
Wiley and Sons, Inc., New York, 1943.

11. Luke, Y.L., Integrals of Bessel Functions, McGraw-Hill, New York, 1962.

12. Colin, A.D., "Modal Analysis for Liapunov Stability of Rotating Elastic
Bodies," Ph.D. Dissertation, University of California, Los Angeles,
April 1973.

94



o10 W(,t)

B L

inner central region outer
region region

Figure 1. Radial Rotating Beam.
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Figure 2. Diametral Rotating Beam.
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Figure 3. First Mode Frequency Estimates.
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Figure 5. Natural Frequencies for Second Mode.
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Figure 6. Mode Shape Approximation for First Mode.
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Figure 7. Mode Shape Approximation for Second Mode.
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